beautypg.com

Trigonometric functions -10, Overview -10, Trigonometric functions – HEIDENHAIN TNC 407 (280 580) ISO Programming User Manual

Page 199: 3 trigonometric functions, Bc a α

background image

TNC 426/TNC 425/TNC 415 B/TNC 407

7 - 1 0

7

Programming with Q Parameters

Fig. 7.3: Sides and angles on a right triangle

7.3 Trigonometric Functions

Sine, cosine and tangent are terms designating the ratios of the sides of
right triangles.

For a right triangle, the trigonometric functions of the angle

α

are defined

by the equations

sin

α

=

a/c,

cos

α

=

b/c,

tan

α

=

a/b = sin

α

/ cos

α

,

where

c is the side opposite the right angle

a is the side opposite angle

α

b the third side.

The angle can be found from the tangent:

α

= arc tan

α

= arc tan (

a/b) = arc tan (sin

α

/ cos

α

)

Example:

a = 10 mm
b = 10 mm

α

= arc tan (

a / b) = arc tan 1 = 45°

Furthermore,

a

2

+

b

2

=

c

2

(

a

2

=

a

.

a)

c =

a

2

+

b

2

Select the trigonometric functions to call the following options:

Overview

b

c

a

α

Soft key

D6: SINE
Example: D06 Q20 P01 –Q5

Calculate the sine of an angle in degrees (°)
and assign it to a parameter

D7: COSINE
Example: D07 Q21 P01 –Q5

Calculate the cosine of an angle in degrees (°)
and assign it to a parameter

D8: ROOT-SUM OF SQUARES
Example: D08 Q10 P01 +5 P02 +4

Take the square root of the sum of two squared
numbers and assign it to a parameter

D13: ANGLE
Example: D13 Q20 P01 +10 P02 –Q1

Calculate the angle from the arc tangent of two
sides or from the sine and cosine of the angle
(0 < angle < 360°) and assign it to a parameter