beautypg.com

1 analog to digital converter, 2 analog comparator, 3 brown-out detector – Rainbow Electronics ATtiny861_V User Manual

Page 36: 4 internal voltage reference, 5 watchdog timer, 6 port pins

background image

36

2588B–AVR–11/06

ATtiny261/461/861

8.7.1

Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to

”ADC – Analog to Digital Converter” on

page 142

for details on ADC operation.

8.7.2

Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. Refer to

”AC – Analog Comparator” on page 138

for details on how

to configure the Analog Comparator.

8.7.3

Brown-out Detector

If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep modes,
and hence, always consume power. In the deeper sleep modes, this will contribute significantly
to the total current consumption. Refer to

”Brown-out Detection” on page 41

for details on how to

configure the Brown-out Detector.

8.7.4

Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to

”Internal Volt-

age Reference” on page 42

for details on the start-up time.

8.7.5

Watchdog Timer

If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to

”Watchdog Timer” on page 42

for details on how to configure the Watchdog Timer.

8.7.6

Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important thing is then to ensure that no pins drive resistive loads. In sleep modes where
both the I/O clock (clk

I/O

) and the ADC clock (clk

ADC

) are stopped, the input buffers of the device

will be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section

”Digital Input Enable and Sleep Modes” on page 57

for details on

which pins are enabled. If the input buffer is enabled and the input signal is left floating or has an
analog signal level close to V

CC

/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to V

CC

/2 on an input pin can cause significant current even in active mode. Digital

input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR0, DIDR1).