Circular path ctp with tangential connection, Helical interpolation, A4¤d" 4 ctp – HEIDENHAIN TNC 320 (340 551-01) User Manual
Page 138: A4¤d""4§a^"mvfma"d, 4pmmf4apmp^fzf4f=amv, 4pmp¤fdfhfm, Pd""=a¤:zpd""mvdfpo^f"4, Fm=zpam, Fda4"damfzpd"apm, Ph*am"apmpo"4a4¤d""m
138
pV"hhamV9pV"hhamV pmp¤
6.5 P
a
th Cont
ours—P
olar Coor
dinat
e
s
Circular Path CTP with Tangential Connection
^Fppdhp¦Fpm"4a4¤d"z"^:"amV"mVFma"dd©Oph"
zF4F=amV4pmp¤FdFhFm
8
Polar coordinates radius PR:
a"m4FOph^F"4
Fm=zpamp^FzpdF
8
Polar coordinates angle PA:
mV¤d"zpaapmpO^F
"4Fm=zpam
Example NC blocks
Helical interpolation
^Fda¨a"4ph*am"apmpO"4a4¤d"hp¦FhFmam"h"amzd"mF"m="
damF"hp¦FhFmzFzFm=a4¤d"p^azd"mF
^Fda¨azpV"hhF=pmd©amzpd"4pp=am"F
Application
"VF_=a"hFFamFm"d"m=F¨Fm"d^F"=
¤*a4"apmVpp¦F
Calculating the helix
pzpV"h"^Fda¨:©p¤h¤FmF^Fp"d"mVdF^p¤V^§^a4^^F
ppdaphp¦Fpm^F^Fda¨amam4FhFm"d=ahFmapm:"m=^Fp"d
^FaV^pO^F^Fda¨
p4"d4¤d"amV"^Fda¨^"ap*F4¤am"m¤z§"==aF4apm:©p¤mFF=
^FOpddp§amV=""9
12 CC X+40 Y+35
13 L X+0 Y+35 RL F250 M3
14 LP PR+25 PA+120
15 CTP PR+30 PA+30
16 L Y+0
^FzpdF
anot^F4FmFpO^F4pmp¤"4M
X
Y
40
35
CC
30°
120°
R30
R25
^F"=F¦pd¤apmm ^F"=F¦pd¤apm^F"=p¦F¤m"
^F"=*FVammamV"m=Fm=
p"d^FaV^^
^F"=za4^ahF^F"=F¦pd¤apmm
m4FhFm"dp"d
"mVdF
¤h*FpOF¦pd¤apmahF¬@"mVdFOp
*FVammamVpO^F"="mVdFOp^F"=
p¦F¤m
"amV4pp=am"F! a4^ahF|^F"=F¦pd¤apm^F"=
p¦F¤m""pO^F"=}
Y
X
Z
CC