Starting a conversion, Atmega169v/l – Rainbow Electronics Atmega169L User Manual
Page 193

193
ATmega169V/L
2514A–AVR–08/02
The ADC generates a 10-bit result which is presented in the ADC Data Registers,
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally
be presented left adjusted by setting the ADLAR bit in ADMUX.
If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content
of the Data Registers belongs to the same conversion. Once ADCL is read, ADC access
to Data Registers is blocked. This means that if ADCL has been read, and a conversion
completes before ADCH is read, neither register is updated and the result from the con-
version is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers is
re-enabled.
The ADC has its own interrupt which can be triggered when a conversion completes.
When ADC access to the Data Registers is prohibited between reading of ADCH and
ADCL, the interrupt will trigger even if the result is lost.
Starting a Conversion
A single conversion is started by writing a logical one to the ADC Start Conversion bit,
ADSC. This bit stays high as long as the conversion is in progress and will be cleared by
hardware when the conversion is completed. If a different data channel is selected while
a conversion is in progress, the ADC will finish the current conversion before performing
the channel change.
Alternatively, a conversion can be triggered automatically by various sources. Auto Trig-
gering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The
trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB
(See description of the ADTS bits for a list of the trigger sources). When a positive edge
occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is
started. This provides a method of starting conversions at fixed intervals. If the trigger
signal still is set when the conversion completes, a new conversion will not be started. If
another positive edge occurs on the trigger signal during conversion, the edge will be
ignored. Note that an interrupt flag will be set even if the specific interrupt is disabled or
the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be triggered
without causing an interrupt. However, the interrupt flag must be cleared in order to trig-
ger a new conversion at the next interrupt event.
Figure 83. ADC Auto Trigger Logic
Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion
as soon as the ongoing conversion has finished. The ADC then operates in Free Run-
ning mode, constantly sampling and updating the ADC Data Register. The first
ADSC
ADIF
SOURCE 1
SOURCE n
ADTS[2:0]
CONVERSION
LOGIC
PRESCALER
START
CLK
ADC
.
.
.
.
EDGE
DETECTOR
ADATE