beautypg.com

Campbell Scientific CR3000 Micrologger User Manual

Page 304

background image

Section 8. Operation

304 

 

 

Offset = 3 x Basic Resolution + 5.0 µV if the measurement is of a single-

ended input channel

The following table lists basic resolution values. 

Table 65. Analog Input-Voltage Range and Basic

Resolution

Range (mV)

Basic Resolution (µV)

±5000
±1000

±200

±50
±20

167

33.3
6.67
1.67
0.67

Assumptions that support the ratiometric-accuracy specification include:


• Excitation voltages less than 500 mV and excitation currents less than 500

µA are reversed during the excitation phase of the measurement.

• Effects due to the following are not included in the specification:

o Bridge-resistor errors

o Sensor noise

o Measurement noise

The ratiometric-accuracy specification is applied to a three-wire half-bridge
measurement that uses the BrHalf() instruction as follows:

The relationship defining the BrHalf() instruction is X = V1/Vx, where V1 
is the voltage measurement and Vx is the excitation voltage.  The 
estimated accuracy of X is designated as ∆X, where ∆X = ∆V1/Vx.  ∆V1 is 
derived using the following method. 

The ratiometric-accuracy specification is applied to a four-wire full-bridge
measurement that uses the BrFull() instruction as follows:

The relationship defining the BrFull() instruction is X = 1000*V1/Vx
where V1 is the voltage measurement and Vx is the excitation voltage.  
Result X is expressed as mV/V.  Estimated accuracy of X is ∆X, where ∆X 
= 1000*∆V1/Vx.  ∆V1 is derived using the following method. 

∆V1 is derived using the ratiometric‐accuracy equation.  The derivation 
is illustrated in this example, which is supported by the assumption that 
the measurement is differential with input reversal, datalogger 
temperature is between 0° to 40°C, analog‐input range is ±200 mV, V1 = 
110 mV, and excitation is reversed during the excitation phase of the 
measurement.  The effect each assumption has on the magnitude of 
∆V1 in this example is noted in the following figure. 

In the case of the Resistance() instruction, sensor resistance is determined from
Vs/Ix, where excitation current Ix is measured across a 1000 Ω, ±0.005% @ 25
˚C, 2 ppm/˚C TCR internal resistor.