beautypg.com

Casio ClassPad II fx-CP400 User Manual

Page 133

background image

Chapter 7: Statistics Application

  133

k Regression graphs

Regression graphs of each of the paired-variable data can be drawn according to the model formulas under
“Regression types” below.

Linear regression graph

Quadratic regression graph

Logistic regression graph

Regression types:

 Linear regression (LinearR) [Linear Reg] ..............................................................

y

=

a

ؒ

x

+

b

,

y

=

a

+

b

ؒ

x

Linear regression uses the method of least squares to determine the equation that best fits your data
points, and returns values for the slope and

y

-intercept. The graphic representation of this relationship is a

linear regression graph.

 Med-Med line (MedMed) [MedMed Line] ...................................................................................

y

=

a

ؒ

x

+

b

When you suspect that the data contains extreme values, you should use the Med-Med graph (which
is based on medians) in place of the linear regression graph. Med-Med graph is similar to the linear
regression graph, but it also minimizes the effects of extreme values.

 Quadratic regression (QuadR) [Quadratic Reg] .............................................................

y

=

a

ؒ

x

2

+

b

ؒ

x

+

c

 Cubic regression (CubicR) [Cubic Reg] ................................................................

y

=

a

ؒ

x

3

+

b

ؒ

x

2

+

c

ؒ

x

+

d

 Quartic regression (QuartR) [Quartic Reg] .................................................

y

=

a

ؒ

x

4

+

b

ؒ

x

3

+

c

ؒ

x

2

+

d

ؒ

x

+

e

Quadratic, cubic, and quartic regression graphs use the method of least squares to draw a curve that
passes the vicinity of as many data points as possible. These graphs can be expressed as quadratic, cubic,
and quartic regression expressions.

 Logarithmic regression (LogR) [Logarithmic Reg] ....................................................................

a

+

b

ؒln(

x

)

Logarithmic regression expresses

y

as a logarithmic function of

x

. The normal logarithmic regression

formula is

y

=

a

+

b

ؒln(

x

). If we say that X = ln(

x

), then this formula corresponds to the linear regression

formula

y

=

a

+

b

ؒX.



a

ؒ

e

b

x

Exponential regression (ExpR) [Exponential Reg].............................................................

y

=

a

ؒ

e

b

ؒ

x

Exponential regression can be used when

y

is proportional to the exponential function of

x

. The normal

exponential regression formula is

y

=

a

ؒ

e

b

ؒ

x

. If we obtain the logarithms of both sides, we get ln(

y

) = ln(

a

) +

b

ؒ

x

. Next, if we say that Y = ln(

y

) and A = In(

a

), the formula corresponds to the linear regression formula Y

= A +

b

ؒ

x

.



a

ؒ

b

x

Exponential regression (abExpR) [abExponential Reg] ........................................................

y

=

a

ؒ

b

x

Exponential regression can be used when

y

is proportional to the exponential function of

x

. The normal

exponential regression formula in this case is

y

=

a

ؒ

b

x

. If we take the natural logarithms of both sides, we

get ln(

y

) = ln(

a

) + (ln(

b

))

ؒ

x

. Next, if we say that Y = ln(

y

), A = ln(

a

) and B = ln(

b

), the formula corresponds to

the linear regression formula Y = A + B

ؒ

x

.

 Power regression (PowerR) [Power Reg] ......................................................................................

y

=

a

ؒ

x

b

Power regression can be used when y is proportional to the power of

x

. The normal power regression

formula is

y

=

a

ؒ

x

b

. If we obtain the logarithms of both sides, we get ln(

y

) = ln(

a

) +

b

ؒln(

x

). Next, if we say

that X = ln(

x

), Y = ln(

y

), and A = ln(

a

), the formula corresponds to the linear regression formula Y = A +

b

ؒX.

 Sinusoidal regression (SinR) [Sinusoidal Reg] ........................................................

y

=

a

ؒsin(

b

ؒ

x

+

c

) +

d

Sinusoidal regression is best for data that repeats at a regular fixed interval over time.