3 using g-solve to analyze a conics graph, Using g-solve to analyze a conics graph, What you can do using the g-solve menu commands – Casio ClassPad II fx-CP400 User Manual
Page 116: Drawing a circle, Drawing an ellipse, Drawing a hyperbola, Drawing a general conics

Chapter 4: Conics Application
116
Drawing a Circle
There are two forms that you can use to draw a circle.
• One form is the standard form, which allows you to specify the center point and radius:
(
x
– H)
2
+ (
y
– K)
2
= R
2
• The other form is the general form, which allows you to specify the coefficients of each term:
A
x
2
+ A
y
2
+ B
x
+ C
y
+ D = 0
Drawing an Ellipse
You can use the standard equation
(
[
− H)
2
A
2
+
= 1
(
\
− K)
2
B
2
to draw an ellipse.
Drawing a Hyperbola
A hyperbola can be drawn with either a horizontal or vertical orientation. The hyperbola type is determined by
the direction of its principal axis.
• The standard form of a hyperbola with a horizontal axis is:
(
[
− H)
2
A
2
–
= 1
(
\
− K)
2
B
2
• The standard form of a hyperbola with a vertical axis is:
(
\
− K)
2
A
2
–
= 1
(
[
− H)
2
B
2
Drawing a General Conics
Using the conics general equation A
x
2
+ B
xy
+ C
y
2
+ D
x
+ E
y
+ F = 0, you can draw a parabola or hyperbola
whose principal axis is not parallel either to the
x
-axis or the
y
-axis, a slanted ellipse, etc.
4-3
Using G-Solve to Analyze a Conics Graph
What You Can Do Using the G-Solve Menu Commands
While there is a graph on the Conics Graph window, you can use a command on the [Analysis] - [G-Solve]
menu to obtain the following information.
•
x
-coordinate for a given
y
-coordinate ................................................................. G-Solve -
x
-Cal/
y
-Cal -
x
-Cal
•
y
-coordinate for a given
x
-coordinate ................................................................. G-Solve -
x
-Cal/
y
-Cal -
y
-Cal
• Focus of a parabola, ellipse, or hyperbola ............................................................................. G-Solve - Focus
• Vertex of a parabola, ellipse, or hyperbola ........................................................................... G-Solve - Vertex
• Directrix of a parabola ........................................................................................................ G-Solve - Directrix
• Axis of symmetry of a parabola ....................................................................................... G-Solve - Symmetry
• Length of the latus rectum of a parabola ...................................................... G-Solve - Latus Rectum Length
• Center point of a circle, ellipse, or hyperbola ........................................................................ G-Solve - Center
• Radius of a circle ................................................................................................................. G-Solve - Radius
• Asymptotes of a hyperbola ........................................................................................... G-Solve - Asymptotes
• Eccentricity of a parabola, ellipse, or hyperbola ........................................................... G-Solve - Eccentricity
•
x
-intercept /
y
-intercept ...............................................................G-Solve -
x
-Intercept / G-Solve -
y
-Intercept
Tip:
The color of Directrix, Symmetry, Asymptotes lines drawn using G-Solve is the color specified by the Graph Format
Sketch Color. For more information about Graph Format, see “Graph Format Dialog Box” (page 36).