beautypg.com

3 using g-solve to analyze a conics graph, Using g-solve to analyze a conics graph, What you can do using the g-solve menu commands – Casio ClassPad II fx-CP400 User Manual

Page 116: Drawing a circle, Drawing an ellipse, Drawing a hyperbola, Drawing a general conics

background image

Chapter 4: Conics Application

  116

Drawing a Circle

There are two forms that you can use to draw a circle.

• One form is the standard form, which allows you to specify the center point and radius:

(

x

– H)

2

+ (

y

– K)

2

= R

2

• The other form is the general form, which allows you to specify the coefficients of each term:

A

x

2

+ A

y

2

+ B

x

+ C

y

+ D = 0

Drawing an Ellipse

You can use the standard equation

(

[

− H)

2

A

2

+

= 1

(

\

− K)

2

B

2

to draw an ellipse.

Drawing a Hyperbola

A hyperbola can be drawn with either a horizontal or vertical orientation. The hyperbola type is determined by
the direction of its principal axis.

• The standard form of a hyperbola with a horizontal axis is:

(

[

− H)

2

A

2

= 1

(

\

− K)

2

B

2

• The standard form of a hyperbola with a vertical axis is:

(

\

− K)

2

A

2

= 1

(

[

− H)

2

B

2

Drawing a General Conics

Using the conics general equation A

x

2

+ B

xy

+ C

y

2

+ D

x

+ E

y

+ F = 0, you can draw a parabola or hyperbola

whose principal axis is not parallel either to the

x

-axis or the

y

-axis, a slanted ellipse, etc.

4-3

Using G-Solve to Analyze a Conics Graph

What You Can Do Using the G-Solve Menu Commands

While there is a graph on the Conics Graph window, you can use a command on the [Analysis] - [G-Solve]
menu to obtain the following information.

x

-coordinate for a given

y

-coordinate ................................................................. G-Solve -

x

-Cal/

y

-Cal -

x

-Cal

y

-coordinate for a given

x

-coordinate ................................................................. G-Solve -

x

-Cal/

y

-Cal -

y

-Cal

• Focus of a parabola, ellipse, or hyperbola ............................................................................. G-Solve - Focus

• Vertex of a parabola, ellipse, or hyperbola ........................................................................... G-Solve - Vertex

• Directrix of a parabola ........................................................................................................ G-Solve - Directrix

• Axis of symmetry of a parabola ....................................................................................... G-Solve - Symmetry

• Length of the latus rectum of a parabola ...................................................... G-Solve - Latus Rectum Length

• Center point of a circle, ellipse, or hyperbola ........................................................................ G-Solve - Center

• Radius of a circle ................................................................................................................. G-Solve - Radius

• Asymptotes of a hyperbola ........................................................................................... G-Solve - Asymptotes

• Eccentricity of a parabola, ellipse, or hyperbola ........................................................... G-Solve - Eccentricity

x

-intercept /

y

-intercept ...............................................................G-Solve -

x

-Intercept / G-Solve -

y

-Intercept

Tip:

The color of Directrix, Symmetry, Asymptotes lines drawn using G-Solve is the color specified by the Graph Format

Sketch Color. For more information about Graph Format, see “Graph Format Dialog Box” (page 36).