Altera_fp_matrix_inv functional description, Altera_fp_matrix_inv functional description -2 – Altera Floating-Point User Manual
Page 26
Table 2-1: ALTERA_FP_MATRIX_INV Resource Utilization and Performance for the Stratix IV Device Family
Precision
Matrix
Size
Blocks
Logic usage
Latenc
y
Throug
hput
(kb/s)
Giga
Floatin
g-
Point
Operat
ions
per
Secon
d
(GFLO
PS)
f
MAX
(MHz)
Adapti
ve
Logic
Modul
es
(ALMs)
DSP
Usage
(18 x
18
DSPs)
M9K
M144K Memor
y (Bits)
Single
4× 4
2
21159
222
139
—
19919 Pendin
g
Pendin
g
Pendin
g
221
6 × 6
2
59827
574
90
—
15759 Pendin
g
Pendin
g
Pendin
g
170
8 × 8
2
5,538
63
49
—
53,736 2,501
3,987
15.26
332
16 ×
16
4
8,865
95
80
—
138,05
1
11,057
855
30.93
329
32 ×
32
8
15,655
159
193
—
699,16
4
52,625
165
55.12
290
64 ×
64
16
29,940
287
386
22
4,770,3
69
281,50
5
25
83.16
218
ALTERA_FP_MATRIX_INV Functional Description
A matrix inversion function is composed of the following components:
• Cholesky decomposition function.
The Cholesky decomposition function generates a lower triangular matrix.
• Triangular matrix inversion function.
The triangular matrix inversion process then generates the inverse of the lower triangular using
backward substitution.
• Matrix multiplication function.
The matrix multiplier multiplies the transpose of the inverse triangular matrix with the inverse
triangular matrix.
In linear algebra, the Cholesky decomposition states that every positive definite matrix A is decomposed
as A = L×LT
where, L is a lower triangular matrix, and LT denotes the transpose of L.
The property of invertible matrices states that (X×Y)-1 = X-1×Y-1 and the property of transpose states
that (XT )-1 = (X-1)T. Combining these two properties, the following equation represents a derivation of
a matrix inversion using the Cholesky decomposition method:
A-1 = (L×LT)-1
2-2
ALTERA_FP_MATRIX_INV Functional Description
UG-01058
2014.12.19
Altera Corporation
ALTERA_FP_MATRIX_INV IP Core