beautypg.com

Fast pwm mode, Atmega162/v – Rainbow Electronics ATmega162V User Manual

Page 119

background image

119

ATmega162/V

2513E–AVR–09/03

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5,6,7,14, or 15) pro-
vides a high frequency PWM waveform generation option. The fast PWM differs from
the other PWM options by its single-slope operation. The counter counts from BOTTOM
to TOP then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OCnx) is set on the Compare Match between TCNTn and OCRnx, and
cleared at TOP. In inverting Compare Output mode output is cleared on Compare Match
and set at TOP. Due to the single-slope operation, the operating frequency of the fast
PWM mode can be twice as high as the phase correct and phase and frequency correct
PWM modes that use dual-slope operation. This high frequency makes the fast PWM
mode well suited for power regulation, rectification, and DAC applications. High fre-
quency allows physically small sized external components (coils, capacitors), hence
reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either
ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM
resolution in bits can be calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in
ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15). The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is
shown in Figure 52. The figure shows fast PWM mode when OCRnA or ICRn is used to
define TOP. The TCNTn value is in the timing diagram shown as a histogram for illus-
trating the single-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a Com-
pare Match occurs.

Figure 52. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In
addition the OCnA or ICFn Flag is set at the same timer clock cycle as TOVn is set
when either OCRnA or ICRn is used for defining the TOP value. If one of the interrupts
are enabled, the interrupt handler routine can be used for updating the TOP and com-
pare values.

R

F PW M

TOP

1

+

(

)

log

2

( )

log

-----------------------------------

=

TCNTn

OCRnx / TOP Update
and TOVn Interrupt Flag
Set and OCnA Interrupt
Flag Set or ICFn
Interrupt Flag Set
(Interrupt on TOP)

1

7

Period

2

3

4

5

6

8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)