beautypg.com

Input attenuator module (iam / mi-iam), Design guide & applications manual, Page 44 of 98 – Vicor VI-J00 Family DC-DC Converters and Configurable Power Supplies User Manual

Page 45: Input voltage maximum capacitance

background image

Design Guide & Applications Manual

For VI-200 and VI-J00 Family DC-DC Converters and Configurable Power Supplies

VI-200 and VI-J00 Family Design Guide

Rev 3.5

vicorpower.com

Page 44 of 98

Apps. Eng. 800 927.9474

800 735.6200

gate of the FET to a voltage in excess of its source. In the
case where multiple DC-DC Driver modules are connected
to one IAM, an external charge pump through the PARALLEL
pin (connected to the gate of the FET) must be added to
ensure that the FET remains enhanced in the event GATE
OUT enhancement is lost (Figure 14 – 4). The additional
circuitry, C2, D1 and D2 are added externally to charge
pump through the PARALLEL pin.

Shut down of the DC-DC converters is accomplished by
saturating Q2 during an input overvoltage to prevent
possible damage to the converters. The IAM will automatically
restart when the input overvoltage is reduced to within
the input voltage range.

If the long term transient withstand specifications are
exceeded, the recommended external fuse will clear.

INPUT CURRENT

Inrush current is a function of the number of DC-DC
converters that are connected to the input attenuator
module (modules are not gated off at turn-on) and the
amount of external capacitance added between the Input
Attenuator Module and the DC-DC converter. The inrush
current specification is 125% of steady state input current
for 10 ms. To avoid excessive dissipation in the element
controlling the inrush (Q1), the following maximum values
of external capacitance must be adhered to.

14. Input Attenuator Module (IAM / MI-IAM)

0.1 1 10ms 100 1000

100V

Normal Operating Area

I.S.W.

Full Load

100V

Standard

Wide Range

24 V Inputs

0.1 1 10ms 100 1000

800V

Normal Operating Area

I.S.W.

Full Load

300 V Input

S.D.

160V

0.1 1 10ms 100 1000

Normal Operating Area

I.S.W.

Full Load

48 V Input

R.E.

276V

Normal Operating Area

I.S.W.

Full Load

0.1 1 10ms 100 1000

48 V Wide Range Input

R.E.

S.D.

R.E.

R.E.

32V

21V

36V

18V

S.D.

76V

125V

60V

100V

42V

500V

400V

200V

36V

S.D.

S.D.

100V

500ms

500ms

I.S.W.: Input surge withstand (no disruption of performance)
R.E.: Ratings exceeded
S.D.: Shut down

VO

LT

S-

PE

AK

V

AL

UE

O

F

SP

IK

E

VO

LT

AG

E

TIME (SECONDS)

1s

0

10

100ms

-1

10

10ms

-2

10

1ms

-3

10

-4

10

-5

10

-6

10

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

Ratings Exceeded

Reverse Polarity

50V

OVP

VO

LT

S-

PE

AK

V

AL

UE

O

F

SP

IK

E

VO

LT

AG

E

TIME (SECONDS)

1s

0

10

100ms

-1

10

10ms

-2

10

1ms

-3

10

-4

10

-5

10

-6

10

600

400

200

0

200

400

600

800

Ratings Exceeded

Reverse Polarity

500

OVP

400

28 Vdc Input

270 Vdc Input

Safe Operating Area
(1% duty cycle max., Zs = 0.5

Ω, for short duration transient capability refer to specifications)

Figure 14–2 — Safe operating area based on input voltage of IAM

24 V

20 A / 32 V (AGC-20)

24 V “W”

20 A / 36 V (AGC-20)

48 V

20 A / 60 V (3AB-20)

48 V “N”

20 A / 80 V (3AB-20)

300 V

5 A / 250 V Bussman PC-Tron

28 V

20 A / 250 V (3AB-20 or F03A, 125 V, 20 A)

270 V

5 A / 250 V Bussman PC-Tron or F03A, 250 V, 4 A

Table 14 –3 — Recommended fusing based on input voltage

Input Voltage

Recommended Fuse

24 Vdc (21 – 32 V)

470 µF

24 Vdc (18 – 36 V)

470 µF

28 Vdc (18 – 50 V)

390 µF

48 Vdc (42 – 60 V)

220 µF

48 Vdc (36 – 76 V)

120 µF

270 Vdc (125 – 400 V)

27 µF

300 Vdc (200 – 400 V)

27 µF

[a]

Capacitance should be distributed across the input of each
DC-DC converter. (C1, Figure 14–3)

Table 14 –4 — Recommended distributed capacitance on input of
DC-DC converter(s)

Input Voltage

Maximum Capacitance

[a]

This manual is related to the following products: