Sinh(), Sinh ê () – Texas Instruments PLUS TI-89 User Manual
Page 519

502 Appendix A: Functions and Instructions
8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 502 of 132
sin
ê
(
squareMatrix1
)
⇒
squareMatrix
Returns the matrix inverse sine of
squareMatrix1
. This is not the same as
calculating the inverse sine of each element.
For information about the calculation
method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode and Rectangular
complex format mode:
sinк([1,5,3;4,2,1;6,л 2,1])
¸
л.164…м.064…шi 1.490…м 2.105…шi …
.725…м 1.515…шi .947…м.778…шi …
2.083…м 2.632…шi л 1.790…+1.271…шi …
sinh()
MATH/Hyperbolic menu
sinh(
expression1
)
⇒
expression
sinh(
list1
)
⇒
list
sinh (
expression1
)
returns the hyperbolic sine
of the argument as an expression.
sinh (
list
)
returns a list of the hyperbolic sines
of each element of
list1
.
sinh(1.2) ¸
1.509...
sinh({0,1.2,3.}) ¸
{0 1.509... 10.017...}
sinh(
squareMatrix1
)
⇒
squareMatrix
Returns the matrix hyperbolic sine of
squareMatrix1
. This is not the same as
calculating the hyperbolic sine of each
element. For information about the
calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode:
sinh([1,5,3;4,2,1;6,ë 2,1])
¸
360.954 305.708 239.604
352.912 233.495 193.564
298.632 154.599 140.251
sinh
ê
()
MATH/Hyperbolic menu
sinh
ê
(
expression1
)
⇒
expression
sinh
ê
(
list1
)
⇒
list
sinh
ê
(
expression1
)
returns the inverse
hyperbolic sine of the argument as an
expression.
sinh
ê
(
list1
)
returns a list of the inverse
hyperbolic sines of each element of
list1
.
sinhê (0) ¸
0
sinhê ({0,2.1,3}) ¸
{0 1.487... sinhê (3)}
sinh
ê
(
squareMatrix1
)
⇒
squareMatrix
Returns the matrix inverse hyperbolic sine of
squareMatrix1
. This is not the same as
calculating the inverse hyperbolic sine of
each element. For information about the
calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode:
sinhк([1,5,3;4,2,1;6,л 2,1])
¸
.041… 2.155… 1.158…
1.463… .926… .112…
2.750… л 1.528… .572…