beautypg.com

Npr(), Nsolve() – Texas Instruments PLUS TI-89 User Manual

Page 491

background image

474 Appendix A: Functions and Instructions

8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 474 of 132

nPr()

MATH/Probability menu

nPr(

expression1

,

expression2

)

expression

For integer

expression1

and

expression2

with

expression1

expression2

‚ 0,

nPr()

is the

number of permutations of

expression1

things

taken

expression2

at a time. Both arguments

can be integers or symbolic expressions.

nPr(

expression, 0

)

1

nPr(

expression, negInteger

)

1/((expression+1)ø (expression+2)...
(expressionì negInteger))

nPr(

expression, posInteger

)

expressionø (expressionì 1)...

(expressionì posInteger+1)

nPr(

expression, nonInteger

)

expression!/

(expressionì nonInteger)!

nPr(z,3) ¸

zø (zм 2)ш (zм 1)

ans(1)|z=5 ¸

60

nPr(z,ë 3) ¸

1

(z+1)ø (z+2)ø (z+3)

nPr(z,c) ¸

z!

(zì c)!

ans(1)ù nPr(zì c,ë c) ¸

1

nPr(

list1

,

list2

)

list

Returns a list of permutations based on the
corresponding element pairs in the two lists.
The arguments must be the same size list.

nPr({5,4,3},{2,4,2}) ¸

{20 24 6}

nPr(

matrix1

,

matrix2

)

matrix

Returns a matrix of permutations based on
the corresponding element pairs in the two
matrices. The arguments must be the same
size matrix.

nPr([6,5;4,3],[2,2;2,2]) ¸

[

30 20
12 6

]

nSolve()

MATH/Algebra menu

nSolve(

equation

,

varOrGuess

)

number or

error_string

Iteratively searches for one approximate real
numeric solution to

equation

for its one

variable. Specify

varOrGuess

as:

variable

– or –

variable

=

real number

For example,

x

is valid and so is

x=3

.

nSolve(x^2+5xì 25=9,x) ¸

3.844...

nSolve(x^2=4,x=л 1) ¸

л 2.

nSolve(x^2=4,x=1) ¸

2.

Note:

If there are multiple solutions, you

can use a guess to help find a particular
solution.

nSolve()

is often much faster than

solve()

or

zeros()

, particularly if the “|” operator is used

to constrain the search to a small interval
containing exactly one simple solution.

nSolve()

attempts to determine either one

point where the residual is zero or two
relatively close points where the residual has
opposite signs and the magnitude of the
residual is not excessive. If it cannot achieve
this using a modest number of sample points,
it returns the string “

no solution found

.”

If you use

nSolve()

in a program, you can use

getType()

to check for a numeric result before

using it in an algebraic expression.

Note:

See also

cSolve()

,

cZeros()

,

solve()

, and

zeros()

.

nSolve(x^2+5xì 25=9,x)|x<0 ¸

ë 8.844...

nSolve(((1+r)^24ì 1)/r=26,r)|r>

0 and r<.25 ¸

.0068...

nSolve(x^2=ë 1,x) ¸

"no solution found"

This manual is related to the following products: