beautypg.com

Texas Instruments PLUS TI-89 User Manual

Page 452

background image

Appendix A: Functions and Instructions 435

8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 435 of 132

Apply

solve()

to an implicit solution if you

want to try to convert it to one or more
equivalent explicit solutions.

deSolve(y'=(cos(y))^2ù x,x,y)
¸

tan(y)=

2

+@3

When comparing your results with textbook
or manual solutions, be aware that different
methods introduce arbitrary constants at
different points in the calculation, which may
produce different general solutions.

solve(ans(1),y) ¸

y=tanê

(

xс +2ш@3

2

)

+@n1ø

p

Note:

To type an @ symbol, press:

TI-89:

¥

§

TI-92 Plus:

2

R

ans(1)|@3=cì 1 and @n1=0 ¸

y=tanê

(

xс +2ш(cм 1)

2

)

deSolve(

1stOrderOde

and

initialCondition

,

independentVar

,

dependentVar

)

a particular solution

Returns a particular solution that satisfies

1stOrderOde

and

initialCondition

. This is

usually easier than determining a general
solution, substituting initial values, solving
for the arbitrary constant, and then
substituting that value into the general
solution.

initialCondition

is an equation of the form:

dependentVar

(

initialIndependentValue

) =

initialDependentValue

The

initialIndependentValue

and

initialDependentValue

can be variables such as

x0

and

y0

that have no stored values. Implicit

differentiation can help verify implicit
solutions.

sin(y)=(yù e^(x)+cos(y))y'! ode
¸

sin(y)=(e

x

øy+cos(y))øy'

deSolve(ode and
y(0)=0,x,y)! soln
¸

ë(2øsin(y)+yс)

2

=л(e

x

м1)шe

ëx

øsin(y)

soln|x=0 and y=0 ¸

true

d(right(eq)ì left(eq),x)/

(d(left(eq)ì right(eq),y))

! impdif(eq,x,y) ¸

Done

ode|y'=impdif(soln,x,y) ¸

true

DelVar ode,soln ¸

Done

deSolve(

2ndOrderOde

and

initialCondition1

and

initialCondition2

,

independentVar

,

dependentVar

)

a particular solution

Returns a particular solution that satisfies

2ndOrderOde

and has a specified value of the

dependent variable and its first derivative at
one point.

deSolve(y''=y^(ë 1/2) and

y(0)=0 and y'(0)=0,t,y) ¸

2øy

3/4

3

=t

solve(ans(1),y) ¸

y=

2

2/3

ø(3øt)

4/3

4

and t

‚0

For

initialCondition1

, use the form:

dependentVar

(

initialIndependentValue

) =

initialDependentValue

For

initialCondition2

, use the form:

dependentVar

' (

initialIndependentValue

) =

initial1stDerivativeValue

This manual is related to the following products: