beautypg.com

HP 48gII User Manual

Page 492

background image

Page 16-14

Now, use ‘(-X)^3*EXP(-a*X)’

` LAP µ. The result is exactly the same.


• Integration theorem. Let F(s) = L{f(t)}, then


• Convolution theorem. Let F(s) = L{f(t)} and G(s) = L{g(t)}, then

{

}

=

=

)}

)(

*

{(

)

(

)

(

0

t

g

f

du

u

t

g

u

f

t

L

L

)

(

)

(

)}

(

{

)}

(

{

s

G

s

F

t

g

t

f

=

⋅L

L


Example 4 – Using the convolution theorem, find the Laplace transform of
(f*g)(t), if f(t) = sin(t), and g(t) = exp(t). To find F(s) = L{f(t)}, and G(s) = L{g(t)},
use: ‘SIN(X)’

` LAP µ. Result, ‘1/(X^2+1)’, i.e., F(s) = 1/(s

2

+1).

Also, ‘EXP(X)’

` LAP. Result, ‘1/(X-1)’, i.e., G(s) = 1/(s-1). Thus, L{(f*g)(t)}

= F(s)

⋅G(s) = 1/(s

2

+1)

⋅1/(s-1) = 1/((s-1)(s

2

+1)) = 1/(s

3

-s

2

+s-1).


• Shift theorem for a shift to the right. Let F(s) = L{f(t)}, then

L{f(t-a)}=e

–as

⋅L{f(t)} = e

–as

⋅F(s).

• Shift theorem for a shift to the left. Let F(s) = L{f(t)}, and a >0, then


• Similarity theorem. Let F(s) = L{f(t)}, and a>0, then L{f(a⋅t)} =

(1/a)

⋅F(s/a).

• Damping theorem. Let F(s) = L{f(t)}, then L{e

–bt

⋅f(t)} = F(s+b).

• Division theorem. Let F(s) = L{f(t)}, then

{

}

).

(

1

)

(

0

s

F

s

du

u

f

t

=

L

.

)

(

)

(

)}

(

{

0





=

+

a

st

as

dt

e

t

f

s

F

e

a

t

f

L

This manual is related to the following products: