beautypg.com

Function trace – HP 48gII User Manual

Page 339

background image

Page 11-13


For square matrices of higher order determinants can be calculated by using
smaller order determinant called cofactors. The general idea is to “expand” a
determinant of a n

×n matrix (also referred to as a n×n determinant) into a sum

of the cofactors, which are (n-1)

×(n-1) determinants, multiplied by the elements

of a single row or column, with alternating positive and negative signs. This
“expansion” is then carried to the next (lower) level, with cofactors of order (n-
2)

×(n-2), and so on, until we are left only with a long sum of 2×2

determinants. The 2

×2 determinants are then calculated through the method

shown above.

The method of calculating a determinant by cofactor expansion is very
inefficient in the sense that it involves a number of operations that grows very
fast as the size of the determinant increases. A more efficient method, and
the one preferred in numerical applications, is to use a result from Gaussian
elimination. The method of Gaussian elimination is used to solve systems of
linear equations. Details of this method are presented in a later part of this
chapter.

To refer to the determinant of a matrix

A, we write det(A). A singular matrix

has a determinant equal to zero.

Function TRACE
Function TRACE calculates the trace of square matrix, defined as the sum of
the elements in its main diagonal, or

=

=

n

i

ii

a

tr

1

)

(A

.

Examples:

This manual is related to the following products: