beautypg.com

Inverse cumulative distribution functions – HP 49g+ User Manual

Page 562

background image

Page 17-13

)

2

(

1

2

2

)

1

(

)

2

(

)

2

(

)

(

)

2

(

)

(

D

N

N

N

D

F

N

D

N

F

D

N

D

N

x

f

ν

ν

ν

ν

ν

ν

ν

ν

ν

ν

ν

ν

+

Γ

Γ

+

Γ

=


The calculator provides for values of the upper-tail (cumulative) distribution
function for the F distribution, function UTPF, given the parameters

νN and νD,

and the value of F. The definition of this function is, therefore,

=

=

=

t

t

F

P

dF

F

f

dF

F

f

F

D

N

UTPF

)

(

1

)

(

1

)

(

)

,

,

(

ν

ν


For example, to calculate UTPF(10,5, 2.5) = 0.161834…

Different probability calculations for the F distribution can be defined using the
function UTPF, as follows:

• P(F• P(a

= UTPF(

νN, νD,a) - UTPF(νN, νD,b)

• P(F>c) = UTPF(νN, νD,a)

Example: Given

νN = 10, νD = 5, find:


P(F<2) = 1-UTPF(10,5,2) = 0.7700…

P(5

P(F>5) = UTPF(10,5,5) = 4.4808..E-2

Inverse cumulative distribution functions

For a continuous random variable X with cumulative density function (cdf) F(x)
= P(Xto find the value of x, such that x = F

-1

(p). This value is relatively simple to

find for the cases of the exponential and Weibull distributions since their cdf’s
have a closed form expression:

This manual is related to the following products: