Tanh ê (), Taylor(), Tcollect() – Texas Instruments TITANIUM TI-89 User Manual
Page 888: 888 appendix a: functions and instructions
![background image](/manuals/213780/888/background.png)
888
Appendix A: Functions and Instructions
tanh
ê ()
MATH/Hyperbolic menu
tanh
ê (
expression1
)
⇒
⇒
⇒
⇒
expression
tanh
ê (
list1
)
⇒
⇒
⇒
⇒
list
tanh
ê (
expression1
)
returns the inverse hyperbolic
tangent of the argument as an expression.
tanh
ê (
list1
)
returns a list of the inverse
hyperbolic tangents of each element of
list1
.
In rectangular complex format mode:
tanhê (0)
¸
0
tanhê ({1,2.1,3})
¸
{
ˆ
.518
...
м
1.570
...ш
i
ln(2)
2 ì
p
2
ø
i
}
tanh
ê(
squareMatrix1
)
⇒
⇒
⇒
⇒
squareMatrix
Returns the matrix inverse hyperbolic tangent of
squareMatrix1
. This is
not
the same as calculating
the inverse hyperbolic tangent of each element.
For information about the calculation method,
refer to
cos()
.
squareMatrix1
must be diagonalizable. The result
always contains floating-point numbers.
In Radian angle mode and Rectangular complex
format mode:
tanhê([1,5,3;4,2,1;6,л2,1]) ¸
л
.099…+.164…ш
i .267…ì 1.490…шi …
л
.087…м.725…ш
i .479…ì.947…шi …
.511…м 2.083…ш
i ë.878…+1.790…øi …
taylor()
MATH/Calculus menu
taylor(
expression1
,
var
,
order
[,
point
])
⇒
⇒
⇒
⇒
expression
Returns the requested Taylor polynomial. The
polynomial includes non-zero terms of integer
degrees from zero through
order
in (
var
minus
point
).
taylor()
returns itself if there is no
truncated power series of this order, or if it would
require negative or fractional exponents. Use
substitution and/or temporary multiplication by a
power of
(
var
minus
point
) to determine more general
power series.
point
defaults to zero and is the expansion point.
taylor(
e
^(‡(x)),x,2)
¸
taylor(
e
^(t),t,4)|t=‡(x)
¸
taylor(1/(xù (xì 1)),x,3)
¸
expand(taylor(x/(xù(xì1)),
x,4)/x,x)
¸
tCollect()
MATH\Algebra\Trig menu
tCollect(
expression1
)
⇒
⇒
⇒
⇒
expression
Returns an expression in which products and
integer powers of sines and cosines are converted
to a linear combination of sines and cosines of
multiple angles, angle sums, and angle
differences. The transformation converts
trigonometric polynomials into a linear
combination of their harmonics.
Sometimes
tCollect()
will accomplish your goals
when the default trigonometric simplification
does not.
tCollect()
tends to reverse
transformations done by
tExpand()
. Sometimes
applying
tExpand()
to a result from
tCollect()
,
or vice versa, in two separate steps simplifies an
expression.
tCollect((cos(a))^2)
¸
cos(2ø a) + 1
2
tCollect(sin(a)cos(b))
¸
sin(aì b)+sin(a+b)
2