Det(), Appendix a: functions and instructions 809 – Texas Instruments TITANIUM TI-89 User Manual
Page 809

Appendix A: Functions and Instructions
809
the general solution.
initialCondition
is an equation of the form:
dependentVar
(
initialIndependentValue
) =
initialDependentValue
The
initialIndependentValue
and
initialDependentValue
can be variables such as
x0
and
y0
that have no
stored values. Implicit differentiation can help
verify implicit solutions.
soln|x=0 and y=0 ¸ true
d
(right(eq)ìleft(eq),x)/
(
d
(left(eq)ìright(eq),y))
!
impdif(eq,x,y) ¸
Done
ode|y'=impdif(soln,x,y) ¸
true
DelVar ode,soln ¸ Done
deSolve(
2ndOrderOde
and
initialCondition1
and
initialCondition2
,
independentVar
,
dependentVar
)
⇒
⇒
⇒
⇒
a particular solution
Returns a particular solution that satisfies
2ndOrderOde
and has a specified value of the
dependent variable and its first derivative at one
point.
deSolve(y''=y^(ë1/2) and y(0)=0 and
y'(0)=0,t,y) ¸
2øy
3/4
3
=t
solve(ans(1),y) ¸
y=
2
2/3
ø
(3øt)
4/3
4
and t‚0
For
initialCondition1
, use the form:
dependentVar
(
initialIndependentValue
) =
initialDependentValue
For
initialCondition2
, use the form:
dependentVar
' (
initialIndependentValue
) =
initial1stDerivativeValue
deSolve(
2ndOrderOde
and
boundaryCondition1
and
boundaryCondition2
,
independentVar
,
dependentVar
)
⇒
⇒
⇒
⇒
a particular solution
Returns a particular solution that satisfies
2ndOrderOde
and has specified values at two
different points.
deSolve(w''ì2w'/x+(9+2/x^2)w=
xù
e
^(x) and w(p/6)=0 and
w(p/3)=0,x,w) ¸
w=
e
p
3
ø
xøcos(3шx)
10
м
e
p
6
ø
xøsin(3øx)
10
+
x
⋅
e
x
10
det()
MATH/Matrix menu
det(
squareMatrix
[,
tol
]) ⇒
⇒
⇒
⇒
expression
Returns the determinant of
squareMatrix
.
Optionally, any matrix element is treated as zero
if its absolute value is less than
tol
. This tolerance
is used only if the matrix has floating-point
entries and does not contain any symbolic
variables that have not been assigned a value.
Otherwise,
tol
is ignored.
•
If you use ¥ ¸ or set the mode to
Exact/Approx=APPROXIMATE
, computations
are done using floating-point arithmetic.
•
If
tol
is omitted or not used, the default
tolerance is calculated as:
5
E
л 14 щ max(dim(
squareMatrix
))
ù rowNorm(
squareMatrix
)
det([a,b;c,d])
¸
aшd
м
bшc
det([1,2;3,4])
¸
ë
2
det(identity(3)
ì
xщ[1,л2,3;
л
2,4,1;л6,л2,7])
¸
л
(98øxòì55øxñ+
12шx
м
1)
[1
E
20,1;0,1]!mat1 [
1.
E
20 1
0 1]
det(mat1) ¸ 0
det(mat1,.1) ¸ 1.
E
20