Fill, Floor(), 820 appendix a: functions and instructions – Texas Instruments TITANIUM TI-89 User Manual
Page 820
![background image](/manuals/213780/820/background.png)
820
Appendix A: Functions and Instructions
For the
AUTO
setting of the
Exact/Approx
mode,
including
var
permits approximation with floating-
point coefficients where irrational coefficients
cannot be explicitly expressed concisely in terms
of the built-in functions. Even when there is only
one variable, including
var
might yield more
complete factorization.
Note: See also
comDenom()
for a fast way to
achieve partial factoring when
factor()
is not
fast enough or if it exhausts memory.
Note: See also
cFactor()
for factoring all the
way to complex coefficients in pursuit of linear
factors.
factor(x^5+4x^4+5x^3ì 6xì 3) ¸
x
5
+
4ø x
4
+
5ø x
3
м
6ш x
ì
3
factor(ans(1),x)
¸
(xм.964…)ш (x
+.611…)ø
(x
+
2.125…)ø (xс +
2.227…ш
x
+
2.392…)
factor(
rationalNumber
)
returns the rational
number factored into primes. For composite
numbers, the computing time grows
exponentially with the number of digits in the
second-largest factor. For example, factoring a
30-digit integer could take more than a day, and
factoring a 100-digit number could take more
than a century.
Note: To stop (break) a computation, press ´.
If you merely want to determine if a number is
prime, use
isPrime()
instead. It is much faster,
particularly if
rationalNumber
is not prime and if
the second-largest factor has more than five
digits.
factor(152417172689) ¸
123457ø1234577
isPrime(152417172689) ¸ false
Fill
MATH/Matrix menu
Fill
expression, matrixVar
⇒
matrix
Replaces each element in variable
matrixVar
with
expression
.
matrixVar
must already exist.
[1,2;3,4]!amatrx ¸
[
1 2
3 4]
Fill 1.01,amatrx ¸ Done
amatrx ¸
[
1.01 1.01
1.01 1.01]
Fill
expression, listVar
⇒
list
Replaces each element in variable
listVar
with
expression
.
listVar
must already exist.
{1,2,3,4,5}!alist ¸
{1 2 3 4 5}
Fill 1.01,alist ¸ Done
alist ¸
{1.01 1.01 1.01 1.01 1.01}
floor()
MATH/Number menu
floor(
expression
)
⇒
⇒
⇒
⇒
integer
Returns the greatest integer that is
the
argument. This function is identical to
int()
.
The argument can be a real or a complex number.
floor(л2.14) ¸
л
3.
floor(
list1
)
⇒
⇒
⇒
⇒
list
floor(
matrix1
)
⇒
⇒
⇒
⇒
matrix
Returns a list or matrix of the floor of each
element.
Note: See also
ceiling()
and
int()
.
floor({3/2,0,л 5.3})
¸
{1
0
л
6.}
floor([1.2,3.4;2.5,4.8])
¸
[
1. 3.
2. 4.]