Cot(), Coth(), Coth – Texas Instruments TITANIUM TI-89 User Manual
Page 797: Crossp(), Appendix a: functions and instructions 797
![background image](/manuals/213780/797/background.png)
Appendix A: Functions and Instructions
797
cot()
MATH/Trig menu
cot(
expression1
)
⇒
⇒
⇒
⇒
expression
cot(
list1
)
⇒
⇒
⇒
⇒
list
Returns the cotangent of
expression1
or returns a
list of the cotangents of all elements in
list1
.
Note: The result is returned as a degree, gradian
or radian angle, according to the current angle
mode setting.
In Degree angle mode:
cot(45) ¸ 1
In Gradian angle mode:
cot(50) ¸ 1
In Radian angle mode:
cot({1,2.1,3}) ¸
{
1
tan(1)
L.584…
1
tan(3)}
cot
LLLL1
()
MATH/Trig menu
cot
LLLL1
(
expression1
)
⇒
⇒
⇒
⇒
expression
cot
LLLL1
(
list1
)
⇒
⇒
⇒
⇒
list
Returns the angle whose cotangent is
expression1
or returns a list containing the
inverse cotangents of each element of
list1
.
Note: The result is returned as a degree, gradian
or radian angle, according to the current angle
mode setting.
In Degree angle mode:
cot
L
1
(1) ¸
45
In Gradian angle mode:
cot
L
1
(1) ¸
50
In Radian angle mode:
cot
L
1
(1) ¸
p
4
coth()
MATH/Hyperbolic menu
coth(
expression1
)
⇒
⇒
⇒
⇒
expression
cot(
list1
)
⇒
⇒
⇒
⇒
list
Returns the hyperbolic cotangent of
expression1
or returns a list of the hyperbolic cotangents of all
elements of
list1
.
coth(1.2) ¸
1.199…
coth({1,3.2}) ¸
{
1
tanh(1)
1.003…
}
coth
LLLL1
()
MATH/Hyperbolic menu
coth
LLLL1
(
expression1
)
⇒
⇒
⇒
⇒
expression
coth
LLLL1
(
list1
)
⇒
⇒
⇒
⇒
list
Returns the inverse hyperbolic cotangent of
expression1
or returns a list containing the
inverse hyperbolic cotangents of each element of
list1
.
coth
L
1
(3.5) ¸
.293…
coth
L
1
({L2,2.1,6}) ¸
{
L
ln(3)
2
.518… ln(7/5)
2
}
crossP()
MATH/Matrix/Vector ops menu
crossP(
list1
,
list2
)
⇒
⇒
⇒
⇒
list
Returns the cross product of
list1
and
list2
as a list.
list1
and
list2
must have equal dimension, and the
dimension must be either 2 or 3.
crossP({a1,b1},{a2,b2})
¸
{0 0 a1ø b2ì a2ø b1}
crossP({0.1,2.2,л 5},{1,л.5,0})
¸
{л 2.5 л 5. л 2.25}
crossP(
vector1
,
vector2
)
⇒
⇒
⇒
⇒
vector
Returns a row or column vector (depending on
the arguments) that is the cross product of
vector1
and
vector2
.
Both
vector1
and
vector2
must be row vectors, or
both must be column vectors. Both vectors must
have equal dimension, and the dimension must
be either 2 or 3.
crossP([1,2,3],[4,5,6])
¸
[л 3 6 л 3]
crossP([1,2],[3,4])
¸
[0
0
л
2]