beautypg.com

Differential – HP Prime Graphing Calculator User Manual

Page 333

background image

Functions and commands

327

Series

Returns the series expansion of an expression in the vicinity of

a given equality variable. With the optional third and fourth

arguments you can specify the order and direction of the

series expansion. If no order is specified the series returned is

fifth order. If no direction is specified, the series is

bidirectional.

series(Expr,Equal(var=limit_point),[Orde
r],[Dir(1,0,-1)])

Example:

series((x^4+x+2)/(x^2+1),x=0,5)

gives

2+x-2x^2-

x^3+3x^4+x^5+x^6*order_size(x)

Summation

Returns the discrete sum of Expr with respect to the variable

Var from Real1 to Real2. You can also use the summation

template in the Template menu. With only the first two

arguments, returns the discrete antiderivative of the expression

with respect to the variable.

sum(Expr,Var,Real1, Real2,[Step])

Example:

sum(n^2,n,1,5)

returns

55

Differential

Curl

Returns the rotational curl of a vector field. Curl([A B C], [x y

z]) is defined to be [dC/dy-dB/dz dA/dz-dC/dx dB/dx-dA/

dy].

curl([Expr1, Expr2, …, ExprN], [Var1,
Var2, …, VarN])

Example:

curl([2*x*y,x*z,y*z],[x,y,z])

returns

[z-x,0,z-

2*x]

Divergence

Returns the divergence of a vector field, defined by:
divergence([A,B,C],[x,y,z])=dA/dx+dB/dy+dC/dz.

divergence([Expr1, Expr2, …, ExprN],
[Var1, Var2, …, VarN])

Example:

divergence([x^2+y,x+z+y,z^3+x^2],[x,y,z])

gives

2*x+3*z^2+1