Casio ClassPad 300 User Manual
Page 367
20021201
Linear Regression
t
Test
Command:
LinRegTTest
Ⅺ
Description: This command treats two groups of data as paired variables (
x
,
y
). The method
of least squares is used to determine the most appropriate pair for the
a
,
b
coefficients of the regression formula
y
=
a
+
b
.
x
. It also determines the
correlation coefficient and
t
value, and calculates the strength of the
relationship between
x
and
y
.
a
: regression constant term (
y
-intercept)
b
: regression coefficient (slope)
n
: sample size (
n
> 3)
r
: correlation coefficient
r
2
: coefficient of determination
Command Syntax
“β &
ρ condition”, XList, YList, Freq (or 1)
* “Freq” can be omitted. Doing so sets “1” for “Freq”.
Definition of Terms
β &
ρ condition :
test conditions (“≠” specifies two-tail test, “<” specifies lower
one-tail test, “>” specifies upper one-tail test.)
XList :
x
-data list
YList :
y
-data list
Freq :
frequency (1 or list name)
Input Example:
LinRegTTest “≠”,list1,list2,1
Calculation Result Output
β ≠ 0 & ρ ≠ 0 :
test condition
t
:
t
value
p
:
p
-value
df
:
degrees of freedom
a
:
regression constant term (
y
-intercept)
b
:
regression coefficient (slope)
s
:
standard error of estimation
r
:
correlation coefficient
r
2
:
coefficient of determination
7-9-9
Tests
b =
Σ
( x –
o)( y – p)
i =1
n
Σ
(x –
o)
2
i =1
n
a =
p – b.o
t
= r
n
– 2
1 – r
2