beautypg.com

Read commands, 1 continuous array read (legacy command: e8h) – Rainbow Electronics AT45DB021E User Manual

Page 7

background image

7

AT45DB021E [PRELIMINARY DATASHEET]

8789B–DFLASH–11/2012

5.

Read Commands

By specifying the appropriate opcode, data can be read from the main memory or from the data buffer. The DataFlash
supports RapidS protocols for Mode 0 and Mode 3. Please see

Section 25., "Detailed Bit-level Read Waveforms: RapidS

Mode 0/Mode 3" on page 55

for diagrams detailing the clock cycle sequences for each mode.

5.1

Continuous Array Read (Legacy Command: E8h)

By supplying an initial starting address for the main memory array, the Continuous Array Read command can be utilized
to sequentially read a continuous stream of data from the device by simply providing a clock signal; no additional
addressing information or control signals need to be provided. The DataFlash incorporates an internal address counter
that will automatically increment on every clock cycle, allowing one continuous read from memory to be performed
without the need for additional address sequences. To perform a Continuous Array Read using the standard DataFlash
page size (264-bytes), an opcode of E8h must be clocked into the device followed by three address bytes (which
comprise the 19-bit page and byte address sequence) and four dummy bytes. The first 10 bits (PA9 - PA0) of the
19-bit address sequence specify which page of the main memory array to read and the last nine bits (BA8 - BA0) of the
19-bit address sequence specify the starting byte address within the page. To perform a Continuous Array Read using
the binary page size (256 bytes), the opcode E8h must be clocked into the device followed by three address bytes
(A17 - A0) and four dummy bytes. The dummy bytes that follow the address bytes are needed to initialize the read
operation. Following the dummy bytes, additional clock pulses on the SCK pin will result in data being output on the
SO (Serial Output) pin.

The CS pin must remain low during the loading of the opcode, the address bytes, the dummy bytes and the reading of
data. When the end of a page in main memory is reached during a Continuous Array Read, the device will continue
reading at the beginning of the next page with no delays incurred during the page boundary crossover (the crossover
from the end of one page to the beginning of the next page). When the last bit in the main memory array has been read,
the device will continue reading back at the beginning of the first page of memory. As with crossing over page
boundaries, no delays will be incurred when wrapping around from the end of the array to the beginning of the array.

A low-to-high transition on the CS pin will terminate the read operation and tri-state the output pin (SO). The maximum
SCK frequency allowable for the Continuous Array Read is defined by the f

CAR1

specification. The Continuous Array

Read bypasses the data buffer and leaves the contents of the Buffer unchanged.
Note:

This command is not recommended for new designs.

5.2

Continuous Array Read (High Frequency Mode: 0Bh Opcode)

This command can be used to read the main memory array sequentially at the highest possible operating clock
frequency up to the maximum specified by f

CAR1

. To perform a Continuous Array Read using the standard DataFlash

page size (264 bytes), the CS pin must first be asserted, and then an opcode of 0Bh must be clocked into the device
followed by three address bytes and one dummy byte. The first 10 bits (PA9 - PA0) of the 19-bit address sequence
specify which page of the main memory array to read and the last nine bits (BA8 - BA0) of the 19-bit address sequence
specify the starting byte address within the page. To perform a Continuous Array Read using the binary page size
(256 bytes), the opcode 0Bh must be clocked into the device followed by three address bytes (A17 - A0) and one dummy
byte. Following the dummy byte, additional clock pulses on the SCK pin will result in data being output on the SO pin.

The CS pin must remain low during the loading of the opcode, the address bytes, the dummy byte, and the reading of
data. When the end of a page in the main memory is reached during a Continuous Array Read, the device will continue
reading at the beginning of the next page with no delays incurred during the page boundary crossover (the crossover
from the end of one page to the beginning of the next page). When the last bit in the main memory array has been read,
the device will continue reading back at the beginning of the first page of memory. As with crossing over page
boundaries, no delays will be incurred when wrapping around from the end of the array to the beginning of the array.

A low-to-high transition on the CS pin will terminate the read operation and tri-state the output pin (SO). The maximum
SCK frequency allowable for the Continuous Array Read is defined by the f

CAR1

specification. The Continuous Array

Read bypasses the data buffer and leaves the contents of the Buffer unchanged.