Table 4a. eeprom address bit map, Eeprom, Output equation – Rainbow Electronics MAX11008 User Manual
Page 40: First-in-first-out (fifo), Lut streaming mode, Message mode, Temperature/apc lut configuration registers, Nonvolatile initialization values, Magic number, See the register address map
MAX11008
EEPROM
The MAX11008 features 4Kb of EEPROM capable of
storing up to 256 16-bit data words. The first 64 data
words of the EEPROM contain configuration data (see
Table 4) while the remaining 192 data words are pro-
grammable and used for storing temperature and APC
LUTs. The MAX11008 utilizes the LUT values to perform
gate voltage calculations (see the
V
GATE
_ Output
Equation
section). See the
First-In-First-Out (FIFO)
,
LUT
Streaming Mode
, and
Message Mode
sections for more
information on how to program and read from the
EEPROM. See the
Temperature/APC LUT Configuration
Registers
section for information on how to configure
the LUTs and how values are retrieved from the LUTs
for V
GATE_
calculations. See Table 5.
Nonvolatile Initialization Values
Upon power-on reset, the data contained within specif-
ic EEPROM locations is copied directly to correspond-
ing locations within the register address map
depending on the state of the magic number (see the
Magic Number
section).
• Locations 0x10–0x1F are directly copied to their cor-
responding locations within the register address
map.
• Locations 0x2C–0x33 are conditionally copied to
their corresponding locations within the register
address map. Set the MSB (labeled WCTRAM) to 1
for locations 0x2C–0x33 to be copied to the register
address map (see Table 4a).
By correctly configuring the initialization values stored
within the EEPROM, the MAX11008 can automatically
enter V
GATE_
compensation mode without the need for
a host processor. This autonomous operation is useful
in some application areas where a host controller is not
desired.
Changes made to the working registers during opera-
tion are volatile. To change a register’s nonvolatile ini-
tialization value, the corresponding EEPROM location
must be written by the LUT streaming protocol.
Magic Number
The address location 0x37 of the EEPROM is referred
to as the magic address. If the magic address is pro-
grammed with the magic number (0xAA55), the values
stored in address locations 0x10–0x1F and 0x2C–0x33
are loaded into the working registers (
see the Register
Address Map
section) during power-up initialization.
Address locations 0x10–0x1F are unconditionally
loaded into the working registers, whereas address
locations 0x2C–0x33 are only loaded if bit D15
(WCTRAM) of the address is set to 1. If magic address
location 0x37 is not programmed with the magic num-
ber (0xAA55), the EEPROM is determined to be unpro-
grammed; the power-up initialization load is then
bypassed and the working registers default to their
power-on reset value.
LUT Values
The values stored within the LUT section of the
EEPROM are 16-bit signed (two’s complement)
Dual RF LDMOS Bias Controller with
Nonvolatile Memory
40
______________________________________________________________________________________
HEX
MNEMONIC
TABLE
BIT 15
BIT 14
BIT 13
BIT 12
BIT 11
BIT 10
BIT 9
BIT 8
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
10
EE_TH1
7
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
11
EE_TL1
8
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
12
EE_IH1
9
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
13
EE_IL1
10
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
14
EE_TH2
7
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
15
EE_TL2
8
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
16
EE_IH2
9
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
17
EE_IL2
10
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
18
EE_HCFIG
11
T1AVGCTL
T1LIMIT2
T1LIMIT1
T1LIMIT0
FIFOSTAT
ADCMON
PG2SET1
PG2SET0
PG1SET1
PG1SET1
CKSEL1
CKSEL0
ADCREF1
ADCREF0
DACREF1
DACREF0
19
EE_ALMSCF
12
X
X
X
X
A2AVG
T2AVG
A1AVG
T1AVG
TALARM2
TWIN2
IALARM2
IWIN2
TALARM1
TWIN1
IALARM1
IWIN1
1A
EE_SCFIG
13
T2AVGCTL
T2LIMIT2
T2LIMIT1
T1LIMIT0
LDAC2
TCOMP2
APCCOMP2
TSRC2
APCSRC21
APCSRC20
LDAC1
TCOMP1
APCCOMP1
TSRC1
APCSRC11
APCSRC10
1B
EE_ALMHCF
14
X
X
X
X
X
AVGMON
INTEMP2
ALMCMP
ALMHYST1
ALMHYST0
ALMCLMP21
ALMCLMP20
ALMCLMP11
ALMCLMP10
ALMPOL
ALMOPN
1C
EE_VSET1
15
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
1D
EE_HIST_AP
16a
T1HIST3
T1HIST2
T1HIST1
T1HIST0
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
1D
EE_HIST_AP
16b
T1HIST3
T1HIST2
T1HIST1
T1HIST0
X
X
X
X
A1AVGCTL
A1LIMIT2
A1LIMIT1
A1LIMIT0
A1HIST3
A1HIST2
A1HIST1
A1HIST0
1E
EE_VSET2
15
X
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
1F
EE_HIST_AP
16a
T1HIST3
T1HIST2
T1HIST1
T1HIST0
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
1F
EE_HIST_AP
16b
T2HIST3
T2HIST2
T2HIST2
T2HIST0
X
X
X
X
A2AVGCTL
A2LIMIT2
A2LIMIT1
A2LIMIT0
A2HIST3
A2HIST2
A2HIST1
A2HIST0
2C
EE_IDAC1
17
WCTRAM
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
2D
EE_IODAC1
18
WCTRAM
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
2E
EE_IDAC2
17
WCTRAM
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
2F
EE_IODAC2
18
WCTRAM
X
X
X
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
30
EE_PGACAL
19
WCTRAM
X
X
X
X
X
X
X
X
X
X
X
X
TRACK
DOCAL
SELFTIME
31
EE_ADCCON
20
WCTRAM
X
X
X
X
X
X
X
CONCONV
ADCIN2
CS2
EXTTEMP2
ADCIN1
CS1
EXTEMP1
INTEMP
32
EE_SSHUT
21
WCTRAM
X
X
X
X
X
X
X
X
X
X
X
FBGON
OSCPD
DAC2PD
DAC1PD
33
EE_LDAC
22
WCTRAM
X
X
X
X
X
X
X
X
X
X
X
X
X
DAC_CH2
DAC_CH1
37
MAGIC NUMBER
—
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
3C
EE_TLUT1
5
POFF5
POFF4
POFF3
POFF2
POFF1
POFF0
INT1
INT0
PSIZE1
PSIZE0
TSIZE2
TSIZE1
TSIZE0
SOT2
SOT1
SOT0
3D
EE_ALUT1
5
POFF5
POFF4
POFF3
POFF2
POFF1
POFF0
INT1
INT0
PSIZE1
PSIZE0
TSIZE2
TSIZE1
TSIZE0
SOT2
SOT1
SOT0
3E
EE_TLUT2
5
POFF5
POFF4
POFF3
POFF2
POFF1
POFF0
INT1
INT0
PSIZE1
PSIZE0
TSIZE2
TSIZE1
TSIZE0
SOT2
SOT1
SOT0
3F
EE_ALUT2
5
POFF5
POFF4
POFF3
POFF2
POFF1
POFF0
INT1
INT0
PSIZE1
PSIZE0
TSIZE2
TSIZE1
TSIZE0
SOT2
SOT1
SOT0
Table 4a. EEPROM Address Bit Map