beautypg.com

2 mathematical lead compensation programs, Ч ч δ = gf r r, R2v - 1 gf 4v – Campbell Scientific 4WFBS120, 4WFBS350, 4WFBS1K 4 Wire Full Bridge Terminal Input Modules User Manual

Page 29

background image

4WFBS120, 4WFBS350, 4WFBS1K 4 Wire Full Bridge Terminal Input Modules (TIM)

Assume R

D

= R

G

L

G

L

G

G

G

L

G

L

G

R

2R

2R

R

R

R

2R

2R

R

R

R

V

+

+

Δ

+

+

Δ

+

+

=

4.4.5

Simplify

(

)(

)

L

G

L

G

G

R

V

=

G

G

L

G

2R

+

2R

R

2R

+

2R

Δ

+

R

R

R

R

Δ

+

Δ

4.4.6

Solve for

ΔR

G

/R

G

(

)

⎟⎟

⎜⎜

+

=

Δ

L

G

R

G

R

R

4V

R

G

R

G

R

2V

-

1

R

4.4.7

Use the Gauge Factor to calculate micro-strain

⎟⎟

Ч

Ч

Δ

=

GF

R

R

G

6

10

με

(

)

⎜⎜

⎟⎟

⎜⎜

+

×

=

G

L

G

R

R

R

R

R

2V

-

1

GF

4V

6

10

με

4.4.8

4.4.1.2 Mathematical Lead Compensation Programs

Example Program 4.6. CR9000X ¼ Bridge Strain with zero offset and Lead
Compensation

This program starts with Example Program 4.2 and adds instructions to
mathematically compensate for the leads resistances effects on the Gauge
Factor (sensitivity effect). Added instructions are highlighted.

'

Program name: StrainSH.C9X

Public

StrainMvperV(3)

:

Units

StrainMvperV = mV_per_V

'Raw Strain dimensioned source

Public

Strain(3)

:

Units

Strain = uStrain

uStrain dimensioned source

Dim

GF(3)

'Dimensioned gauge factor

Public

ZeromV_V(3), ZeroStrain(3)

Public

ZReps, ZIndex, ModeVar

Public

Leadlength(3), Lead_R(3),GF_Adjusted(3),

Public

I, LeadRper100ft, Gauge_R

DataTable

(STRAIN,True,-1)

'Trigger, auto size

DataInterval

(0,0,0,100)

'Synchronous, 100 lapses, autosize

CardOut

(0,-1)

'PC card , size Auto

Sample

(3,Strain(),IEEE4)

'3 Reps, uStrain, Resolution

Sample

(3,StrainMvperV(),IEEE4)

‘3Reps,Stain mVolt/Volt, Resolution

EndTable

'End of table STRAIN

DataTable

(Calib,

NewFieldCal

,10)

‘Table for calibration factors from zeroing

SampleFieldCal

‘User should collect these to his computer

EndTable

‘for future reference

23