HP 15c User Manual
Page 92

92
Section 4: Using Matrix Operations
92
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
.
2014
and
6
.
2014
6
.
2014
6
.
2014
6
.
2014
6
.
2014
1
-
E
X
.
Substituting, you find
00147
.
0
00146
.
0
00146
.
0
00146
.
0
00146
.
1
EX
.
Upon checking (using >7), you find that 1/||E
−1
|| ≈ 9.9 × 10
−5
which is very small
compared with ||E|| ≈ 1.6 × 10
4
(or that the calculated condition number is large—
||E|| ||E
−1
|| ≈ 1.6 × 10
8
).
Choose any row vector u
T
= (1, 1, 1, 1, 1) and calculate
u
T
E
−1
≈ 10,073 (1,1,1,1,1).
Using a = 10
−4
v
T
= a u
T
E
−1
≈ 1.0073 (1,1,1,1,1)
r
T
= (1,1,1,1,1)
|| r
T
E|| ≈ 5 × 10
-4
|| r
T
|| ||E|| ≈ 8 × 10
4
As expected, ||r
T
E|| is small compared to || r
T
|| ||E||.
Now replace the first row of E by
10
7
r
T
E = (1000, 1000, 1000, 1000, 1000)
and the first row of B by 10
7
r
T
B = 10
7
. This gives a new system equation AX=D, where
0
0
0
0
10
and
1000
1000
1000
1000
1000
7
D
A
x
y
y
y
y
y
x
y
y
y
y
y
x
y
y
y
y
y
x
y
.