beautypg.com

Device operation, Sram read, Sram write – Cypress STK22C48 User Manual

Page 3: Autostore operation, Autostore inhibit mode, Stk22c48

background image

STK22C48

Document Number: 001-51000 Rev. **

Page 3 of 14

Device Operation

The STK22C48 nvSRAM is made up of two functional compo-
nents paired in the same physical cell. These are an SRAM
memory cell and a nonvolatile QuantumTrap cell. The SRAM
memory cell operates as a standard fast static RAM. Data in the
SRAM is transferred to the nonvolatile cell (the STORE
operation) or from the nonvolatile cell to SRAM (the RECALL
operation). This unique architecture enables the storage and
recall of all cells in parallel. During the STORE and RECALL
operations, SRAM Read and Write operations are inhibited. The
STK22C48 supports unlimited reads and writes similar to a
typical SRAM. In addition, it provides unlimited RECALL opera-
tions from the nonvolatile cells and up to one million STORE
operations.

SRAM Read

The STK22C48 performs a Read cycle whenever CE and OE are
LOW while WE and HSB are HIGH. The address specified on
pins A

0–10

determines the 2,048 data bytes accessed. When the

Read is initiated by an address transition, the outputs are valid
after a delay of t

AA

(Read cycle 1). If the Read is initiated by CE

or OE, the outputs are valid at t

ACE

or at t

DOE

, whichever is later

(Read cycle 2). The data outputs repeatedly respond to address
changes within the t

AA

access time without the need for transi-

tions on any control input pins, and remains valid until another
address change or until CE or OE is brought HIGH, or WE or
HSB is brought LOW.

SRAM Write

A Write cycle is performed whenever CE and WE are LOW and
HSB is HIGH. The address inputs must be stable prior to entering
the Write cycle and must remain stable until either CE or WE
goes HIGH at the end of the cycle. The data on the common IO
pins DQ

0–7

are written into the memory if it has valid t

SD

, before

the end of a WE controlled Write or before the end of an CE
controlled Write. Keep OE HIGH during the entire Write cycle to
avoid data bus contention on common IO lines. If OE is left LOW,
internal circuitry turns off the output buffers t

HZWE

after WE goes

LOW.

AutoStore Operation

During normal operation, the device draws current from V

CC

to

charge a capacitor connected to the V

CAP

pin. This stored

charge is used by the chip to perform a single STORE operation.
If the voltage on the V

CC

pin drops below V

SWITCH

, the part

automatically disconnects the V

CAP

pin from V

CC

. A STORE

operation is initiated with power provided by the V

CAP

capacitor.

Figure 2

shows the proper connection of the storage capacitor

(V

CAP

) for automatic store operation. A charge storage capacitor

between 68 µF and 220 µF (+20%) rated at 6V should be

In system power mode, both V

CC

and V

CAP

are connected to the

+5V power supply without the 68

μF capacitor. In this mode, the

AutoStore function of the STK22C48 operates on the stored
system charge as power goes down. The user must, however,
guarantee that V

CC

does not drop below 3.6V during the 10 ms

STORE

cycle.

To prevent unneeded STORE

operations, automatic STOREs

and those initiated by externally driving HSB LOW are ignored,
unless at least one

WRITE

operation takes place since the most

recent STORE

or RECALL

cycle. An optional pull up resistor is

shown connected to HSB. This is used to signal the system that
the AutoStore cycle is in progress.

AutoStore Inhibit mode

If an automatic STORE

on power loss is not required, then V

CC

is tied to ground and +5V is applied to V

CAP

(

Figure 3

). This is

the AutoStore Inhibit mode, where the AutoStore function is
disabled. If the STK22C48 is operated in this configuration, refer-
ences to V

CC

are changed to V

CAP

throughout this data sheet.

In this mode, STORE

operations are triggered with the HSB pin.

It is not permissible to change between these three options “on
the fly”.

Figure 2. AutoStore Mode

9FF

9

&$3

P

K
2

N

)

5

Y

P

K
2

N

:(

+6%

9VV

)

5

V

V

D

S

\

%

[+] Feedback