beautypg.com

Applications information – Rainbow Electronics MAX1301 User Manual

Page 25

background image

• External-Acquisition-Mode Control Byte

• Internal-Clock-Mode Control Byte

• Reset Byte

• Partial Power-Down-Mode Control Byte

This prevents the MAX1300/MAX1301 from inadvertent-
ly exiting full power-down mode because of a CS glitch
in a noisy digital environment.

Power-On Reset

The MAX1300/MAX1301 power up in normal operation
configured for external clock mode with all circuitry
active (Tables 7 and 8). Each analog input channel
(CH0–CH7) is set for single-ended conversions with a
±12V bipolar input range (Table 6).

Allow the power supplies to stabilize after power-up. Do
not initiate any conversions until the power supplies
have stabilized. Additionally, allow 10ms for the internal
reference to stabilize when C

REF

= 1.0µF and C

RECAP

= 0.1µF. Larger reference capacitors require longer
stabilization times.

Internal or External Reference

The MAX1300/MAX1301 operate with either an internal or
external reference. The reference voltage impacts the
ADC’s FSR (Figures 12, 13, and 14). An external refer-
ence is recommended if more accuracy is required than
the internal reference provides, and/or multiple converters
require the same reference voltage.

Internal Reference

The MAX1300/MAX1301 contain an internal 4.096V
bandgap reference. This bandgap reference is connect-
ed to REFCAP through a nominal 5k

Ω resistor (Figure 17).

The voltage at REFCAP is buffered creating 4.096V at

REF. When using the internal reference, bypass
REFCAP with a 0.1µF or greater capacitor to AGND1 and
bypass REF with a 1.0µF or greater capacitor to AGND1.

External Reference

For external reference operation, disable the internal
reference and reference buffer by connecting REFCAP
to AV

DD1

. With AV

DD1

connected to REFCAP, REF

becomes a high-impedance input and accepts an
external reference voltage. The MAX1300/MAX1301
external reference current varies depending on the
applied reference voltage and the operating mode (see
the External Reference Input Current vs. External
Reference Input Voltage in the Typical Operating
Characteristics
).

Applications Information

Noise Reduction

Additional samples can be taken and averaged (over-
sampling) to remove the effect of transition noise on
conversion results. The square root of the number of
samples determines the improvement in performance.
For example, with 2/3LSB

RMS

(4LSB

P-P

) transition

noise, 16 (4

2

= 16) samples must be taken to reduce

the noise to 1LSB

P-P

.

Interface with 0 to 10V Signals

In industrial control applications, 0 to 10V signaling is
common. For 0 to 10V applications, configure the selected
MAX1300/MAX1301 input channel for the single-ended 0
to 12V input range (R[2:0] = 110, Table 6). The 0 to 12V
range accommodates 0 to 10V where the signals saturate
at approximately 12V if out of range.

Interface with 4–20mA Signals

Figure 19 illustrates a simple interface between the
MAX1300/MAX1301 and a 4–20mA signal. 4–20mA sig-
naling can be used as a binary switch (4mA represents
a logic-low signal, 20mA represents a logic-high sig-
nal), or for precision communication where currents
between 4mA and 20mA represent intermediate analog
data. For binary switch applications, connect the
4–20mA signal to the MAX1300/MAX1301 with a resis-
tor to ground. For example, a 250

Ω resistor converts

the 4–20mA signal to a 1V to 5V signal. Adjust the
resistor value so the parallel combination of the resistor
and the MAX1300/MAX1301 source impedance is
250

Ω. In this application, select the single-ended 0 to

6V range (R[2:0] = 011, Table 6). For applications that
require precision measurements of continuous analog
currents between 4mA and 20mA, use a buffer to pre-
vent the MAX1300/MAX1301 input from diverting cur-
rent from the 4–20mA signal.

MAX1300/MAX1301

8-/4-Channel, ±12V Multirange Inputs,

Serial 16-Bit ADCs

______________________________________________________________________________________

25

REF

REFCAP

AGND1

4.096V

BANDGAP

REFERENCE

5k

1x

SAR

ADC REF

4.096V

1.0

µF

0.1

µF

V

RCTH

MAX1300
MAX1301

Figure 17. Internal Reference Operation