beautypg.com

Rainbow Electronics DS2433 User Manual

Page 2

background image

DS2433

2 of 21

number that includes a unique 48-bit serial number, an 8-bit CRC, and an 8-bit Family Code (23h) plus
4096 bits of user-programmable EEPROM. The power to read and write the DS2433 is derived entirely
from the 1-Wire communication line. The memory is organized as sixteen pages of 256 bits each. The
scratchpad is an additional page that acts as a buffer when writing to memory. Data is first written to the
scratchpad where it may be read back for verification. A copy scratchpad command will then transfer the
data to memory. This process insures data integrity when modifying the memory. The 64-bit registration
number provides a guaranteed unique identity which allows for absolute traceability and acts as node
address if multiple DS2433 are connected in parallel to form a local network. Data is transferred serially
via the 1-Wire protocol which requires only a single data lead and a ground return. The PR-35 and SOIC
packages provide a compact enclosure that allows standard assembly equipment to handle the device
easily for attachment to printed circuit boards or wiring. Typical applications include storage of
calibration constants, board identification and product revision status.

OVERVIEW

The block diagram in Figure 1 shows the relationships between the major control and memory sections of
the DS2433. The DS2433 has three main data components: 1) 64-bit lasered ROM, 2) 256-bit scratchpad,
and 3) 4096-bit EEPROM. The hierarchical structure of the 1-Wire protocol is shown in Figure 2. The
bus master must first provide one of the six ROM Function Commands, 1) Read ROM, 2) Match ROM,
3) Search ROM, 4) Skip ROM, 5) Overdrive-Skip ROM or 6) Overdrive-Match ROM. Upon completion
of an overdrive ROM command byte executed at standard speed, the device will enter Overdrive mode
where all subsequent communication occurs at a higher speed. The protocol required for these ROM
function commands is described in Figure 9. After a ROM function command is successfully executed,
the memory functions become accessible and the master may provide any one of the four memory
function commands. The protocol for these memory function commands is described in Figure 7. All data
is read and written least significant bit first.

PARASITE POWER

The block diagram (Figure 1) shows the parasite-powered circuitry. This circuitry “steals” power
whenever the I/O input is high. I/O will provide sufficient power as long as the specified timing and
voltage requirements are met.