beautypg.com

Supplementary material, Midi implementation, Decimal and hexadecimal table – Roland MIDI Implementation F-120R User Manual

Page 15: Examples of actual midi messages

background image

MIDI Implementation

15

4. Supplementary Material

Decimal and Hexadecimal Table

In MIDI documentation, data values and addresses/sizes of exclusive messages etc.

are expressed as hexadecimal values for each 7 bits.

The following table shows how these correspond to decimal numbers.

+------+------++------+------++------+------++------+------+
| D | H || D | H || D | H || D | H |
+------+------++------+------++------+------++------+------+
| 0 | 00H || 32 | 20H || 64 | 40H || 96 | 60H |
| 1 | 01H || 33 | 21H || 65 | 41H || 97 | 61H |
| 2 | 02H || 34 | 22H || 66 | 42H || 98 | 62H |
| 3 | 03H || 35 | 23H || 67 | 43H || 99 | 63H |
| 4 | 04H || 36 | 24H || 68 | 44H || 100 | 64H |
| 5 | 05H || 37 | 25H || 69 | 45H || 101 | 65H |
| 6 | 06H || 38 | 26H || 70 | 46H || 102 | 66H |
| 7 | 07H || 39 | 27H || 71 | 47H || 103 | 67H |
| 8 | 08H || 40 | 28H || 72 | 48H || 104 | 68H |
| 9 | 09H || 41 | 29H || 73 | 49H || 105 | 69H |
| 10 | 0AH || 42 | 2AH || 74 | 4AH || 106 | 6AH |
| 11 | 0BH || 43 | 2BH || 75 | 4BH || 107 | 6BH |
| 12 | 0CH || 44 | 2CH || 76 | 4CH || 108 | 6CH |
| 13 | 0DH || 45 | 2DH || 77 | 4DH || 109 | 6DH |
| 14 | 0EH || 46 | 2EH || 78 | 4EH || 110 | 6EH |
| 15 | 0FH || 47 | 2FH || 79 | 4FH || 111 | 6FH |
| 16 | 10H || 48 | 30H || 80 | 50H || 112 | 70H |
| 17 | 11H || 49 | 31H || 81 | 51H || 113 | 71H |
| 18 | 12H || 50 | 32H || 82 | 52H || 114 | 72H |
| 19 | 13H || 51 | 33H || 83 | 53H || 115 | 73H |
| 20 | 14H || 52 | 34H || 84 | 54H || 116 | 74H |
| 21 | 15H || 53 | 35H || 85 | 55H || 117 | 75H |
| 22 | 16H || 54 | 36H || 86 | 56H || 118 | 76H |
| 23 | 17H || 55 | 37H || 87 | 57H || 119 | 77H |
| 24 | 18H || 56 | 38H || 88 | 58H || 120 | 78H |
| 25 | 19H || 57 | 39H || 89 | 59H || 121 | 79H |
| 26 | 1AH || 58 | 3AH || 90 | 5AH || 122 | 7AH |
| 27 | 1BH || 59 | 3BH || 91 | 5BH || 123 | 7BH |
| 28 | 1CH || 60 | 3CH || 92 | 5CH || 124 | 7CH |
| 29 | 1DH || 61 | 3DH || 93 | 5DH || 125 | 7DH |
| 30 | 1EH || 62 | 3EH || 94 | 5EH || 126 | 7EH |
| 31 | 1FH || 63 | 3FH || 95 | 5FH || 127 | 7FH |
+------+------++------+------++------+------++------+------+

D: decimal

H: hexadecimal

* Decimal values such as MIDI channel, bank select, and program change are listed as

one (1) greater than the values given in the above table.

* A 7-bit byte can express data in the range of 128 steps. For data where greater

precision is required, we must use two or more bytes. For example, two

hexadecimal numbers aa bbH expressing two 7-bit bytes would indicate a value of

aa x 128 + bb.

* In the case of values which have a ± sign, 00H = -64, 40H = ±0, and 7FH = +63, so

that the decimal expression would be 64 less than the value given in the above

chart. In the case of two types, 00 00H = -8192, 40 00H = ±0, and 7F 7FH = +8191.

For example if aa bbH were expressed as decimal, this would be aa bbH - 40 00H =

aa x 128 + bb - 64 x 128.

* Data marked “nibbled” is expressed in hexadecimal in 4-bit units. A value expressed

as a 2-byte nibble 0a 0bH has the value of a x 16 + b.

What is the decimal expression of 5AH?

From the preceding table, 5AH = 90

What is the decimal expression of the value 12 34H given as hexadecimal for each 7

bits?

From the preceding table, since 12H = 18 and 34H = 52

18 x 128 + 52 = 2356

What is the decimal expression of the nibbled value 0A 03 09 0D?

From the preceding table, since 0AH = 10, 03H = 3, 09H = 9, 0DH = 13

((10 x 16 + 3) x 16 + 9) x 16 + 13 = 41885

What is the nibbled expression of the decimal value 1258?

16) 1258
16) 78... 10
16) 4... 14
0... 4

Since from the preceding table, 0 = 00H, 4 = 04H, 14 = 0EH, 10 = 0AH, the answer is

00 04 0E 0AH.

Examples of Actual MIDI Messages

92 3E 5F

9n is the Note-on status, and n is the MIDI channel number. Since 2H = 2, 3EH = 62,

and 5FH = 95, this is a Note-on message with MIDI CH = 3, note number 62 (note

name is D4), and velocity 95.

CE 49

CnH is the Program Change status, and n is the MIDI channel number. Since EH = 14

and 49H = 73, this is a Program Change message with MIDI CH = 15, program number

74 (Flute in GS).

EA 00 28

EnH is the Pitch Bend Change status, and n is the MIDI channel number. The 2nd byte

(00H = 0) is the LSB and the 3rd byte (28H = 40) is the MSB, but Pitch Bend Value is a

signed number in which 40 00H (= 64 x 128 + 0 = 8192) is 0, so this Pitch Bend Value

is 28 00H - 40 00H = 40 x 128 + 0 - (64 x 128 + 0) = 5120 - 8192 = -3072

If the Pitch Bend Sensitivity is set to 2 semitones, -8192 (00 00H) will cause the pitch

to change 200 cents, so in this case -200 x (-3072) / (-8192) = -75 cents of Pitch Bend is

being applied to MIDI channel 11.

B3 64 00 65 00 06 0C 26 00 64 7F 65 7F

BnH is the Control Change status, and n is the MIDI channel number. For Control

Changes, the 2nd byte is the control number, and the 3rd byte is the value. In a case

in which two or more messages consecutive messages have the same status, MIDI

has a provision called “running status” which allows the status byte of the second

and following messages to be omitted. Thus, the above messages have the following

meaning.

B3

64 00

MIDI ch.4, lower byte of RPN parameter number: 00H

(B3)

65 00

(MIDI ch.4) upper byte of RPN parameter number: 00H

(B3)

06 0C

(MIDI ch.4) upper byte of parameter value: 0CH

(B3)

26 00

(MIDI ch.4) lower byte of parameter value: 00H

(B3)

64 7F

(MIDI ch.4) lower byte of RPN parameter number: 7FH

(B3)

65 7F

(MIDI ch.4) upper byte of RPN parameter number: 7FH

In other words, the above messages specify a value of 0C 00H for RPN parameter

number 00 00H on MIDI channel 4, and then set the RPN parameter number to 7F

7FH.

RPN parameter number 00 00H is Pitch Bend Sensitivity, and the MSB of the value

indicates semitone units, so a value of 0CH = 12 sets the maximum pitch bend range

to ±12 semitones (1 octave). (On GS sound sources the LSB of Pitch Bend Sensitivity

is ignored, but the LSB should be transmitted anyway (with a value of 0) so that

operation will be correct on any device.)

Once the parameter number has been specifi ed for RPN or NRPN, all Data Entry

messages transmitted on that same channel will be valid, so after the desired value

has been transmitted, it is a good idea to set the parameter number to 7F 7FH to

prevent accidents. This is the reason for the (B3) 64 7F (B3) 65 7F at the end.

It is not desirable for performance data (such as Standard MIDI File data) to contain

many events with running status as given in . This is because if playback

is halted during the song and then rewound or fast-forwarded, the sequencer may

not be able to transmit the correct status, and the sound source will then

misinterpret the data. Take care to give each event its own status.

It is also necessary that the RPN or NRPN parameter number setting and the value

setting be done in the proper order. On some sequencers, events occurring in the

same (or consecutive) clock may be transmitted in an order diff erent than the order

in which they were received. For this reason it is a good idea to slightly skew the time

of each event (about 1 tick for TPQN = 96, and about 5 ticks for TPQN = 480).

* TPQN: Ticks Per Quarter Note