Omega Engineering TX801M User Manual
Page 4
3
4
5
6
Terminations.
Output 1
+Ve
2
-Ve
Input
3
Xin
4
Yin
5
Zin
6
COM
P/S
7
~AC/+DC
8
~AC/-DC
Examples of Input Connection.
Xin
Yin
Zin
COM
Transducer With Current
−
−
−
−
−
or Voltage Output. +
Transducer With Current
−
or Voltage Output. +
Transducer With Current
−
−
−
−
−
or Voltage Output. +
2
1
8
7
-
+
-
+
~
~
Power
Supply
Output
Input
1600V
Isolation
AC/DC Power
Source.
-
+
Eg. Indicator, 2100-M,
etc. With Voltage or
Current Input.
~
~
-
+
ON
1
2
3
4
5
6
S1-Span
ON
1
2
3
4
S2-Function
OFF
ON
Gain = 1
Gain = 0
Gain = 2
Gain = 0
Gain = 4
Gain = 0
Gain = 8
Gain = 0
Gain =16 Gain = 0
Gain =32 Gain = 0
25 Turn Trimpot
for Span ±10%
OFF
ON
0% Offset
+20% Offset
0% Offset
-50% Offset
Current O/P Voltage O/P
Current O/P Voltage O/P
Zero
25 Turn Trimpot
for Zero ±10%
Plan View of TX801M Adjustments.
TX801M H1 Power Supply Link Settings.
OUTPUT PROGRAMMING
INPUT PROGRAMMING
Span
S3-Maths
S4-Input
S
Z
6
5
4
3
2
1
ON
6
5
4
3
2
1
ON
Refer to
'MATHS FUNCTION
PROGRAMMING TABLE'
for Dip Switch Settings
OFF
ON
}
20% Offset
}
No Offset.
1/2 Scale in Full Scale in
Zin=Voltage Zin=Current
Yin=VoltageYin=Current
Xin=VoltageXin=Current
COMMS
RESET
s
g
n
i
t
t
e
S
k
n
i
L
y
l
p
p
u
S
r
e
w
o
P
1
H
e
g
n
a
R
e
g
a
t
l
o
V
y
l
p
p
u
S
r
e
w
o
P
H
c
d
V
0
8
3
~
0
8
/
c
a
V
0
7
2
~
0
7
:
h
g
i
H
r
o
f
k
n
i
L
M
c
d
V
0
9
~
0
2
/
c
a
V
0
8
~
4
2
:
d
i
M
r
o
f
k
n
i
L
WARNING: High Voltages Maybe Present.
Only adjust link with power disconnected.
Notes:
1/ H1 is approx 4cm (1½") behind the 'S' trimpot.
2/ Exceeding voltage ranges may damage the unit.
3/ Ensure the enclosure label is correctly labelled for the
link position.
4/ Adjust H1 jumper with a pair of needle nose pliers.
5/ Low Voltage Power Supply version is fixed, and has no
link. This must be ordered separately.
S2 -F U N C T
S1 -SP A N
S
Z
H
M
H 1
H
M
M ID
H IG H
Note:
Power supply H is field selectable for M, and M for H. Power supply L must be ordered separately.
S
E
G
N
A
R
T
U
P
N
I
N
O
I
T
C
N
U
F
S
H
T
A
M
S
E
G
N
A
R
T
U
P
T
U
O
t
u
p
n
I
R
I
)
=
t
u
p
t
u
O
(
.
t
c
n
u
F
s
h
t
a
M
F
M
.
t
c
n
u
F
s
h
t
a
M
)
=
t
u
p
t
u
O
(
F
M
e
g
a
t
l
o
V
R
O
t
n
e
r
r
u
C
R
O
V
5
~
0
A
Y
+
X
1
d
l
o
H
d
n
a
e
l
p
m
a
S
6
2
V
m
0
0
5
~
0
A
A
m
1
~
0
1
V
0
1
~
0
B
Z
+
Y
+
X
2
e
r
a
T
7
2
V
1
~
0
B
A
m
2
~
0
2
V
5
~
1
C
Y
-
X
3
8
2
V
2
~
0
C
A
m
5
~
0
3
V
0
1
~
2
D
Z
+
Y
-
X
4
t
e
W
=
Y
,
y
r
D
=
X
,
H
R
%
9
2
V
3
~
0
D
A
m
0
1
~
0
4
A
m
0
2
~
0
E
Y
×
X
5
e
v
r
u
C
d
e
n
i
f
e
D
r
e
s
U
0
3
V
4
~
0
E
A
m
6
1
~
0
5
A
m
0
2
~
4
F
Z
×
Y
×
X
6
m
a
r
g
o
r
P
e
v
r
u
C
d
e
n
i
f
e
D
r
e
s
U
1
3
V
5
~
0
F
A
m
0
2
~
0
6
Y
/
X
7
w
o
l
F
m
a
e
t
S
.
p
m
o
C
e
r
u
s
s
e
r
P
2
3
V
6
~
0
G
A
m
5
~
1
7
Z
×
)
Y
/
X
(
8
s
e
u
l
a
V
F
S
C
P
m
a
r
g
o
r
P
3
3
V
8
~
0
H
A
m
0
1
~
2
8
(
^
X
1
/
2
}
X
t
o
o
r
e
r
a
u
q
S
{
)
9
Y
r
o
X
f
o
t
c
e
l
e
S
i
H
4
3
V
0
1
~
0
I
A
m
0
2
~
4
9
(
^
X
1
/
3
}
X
t
o
o
r
e
b
u
C
{
)
0
1
Y
r
o
X
f
o
t
c
e
l
e
S
o
L
5
3
V
2
1
~
0
J
A
m
1
~
1
-
0
1
(
^
X
3
/
2
)
1
1
6
3
V
5
~
1
K
A
m
2
~
2
-
1
1
X
2
2
1
7
3
V
0
1
~
2
L
A
m
5
~
5
-
2
1
X
3
3
1
8
3
V
1
~
1
-
M
A
m
0
1
~
0
1
-
3
1
}
X
g
o
l
l
a
r
u
t
a
N
{
X
n
l
4
1
9
3
V
2
~
2
-
N
A
m
0
2
~
0
2
-
4
1
}
X
g
o
l
0
1
e
s
a
B
{
X
g
o
l
5
1
0
4
V
5
~
5
-
O
X
(
2
Y
+
2
(
^
)
1
/
2
)
6
1
1
4
V
0
1
~
0
1
-
P
2
/
)
Y
+
X
(
7
1
2
4
V
2
1
~
2
1
-
Q
3
/
)
Z
+
Y
+
X
(
8
1
3
4
}
e
m
u
l
F
ll
a
h
s
r
a
P
{
9
6
5
.
1
^
X
9
1
4
4
(
^
X
5
/
2
}
r
i
e
W
h
c
t
o
N
V
{
)
0
2
5
4
}
t
u
o
X
=
n
i
X
e
i
{
X
1
2
6
4
}
%
)
X
-
0
0
1
(
.
e
i
{
X
f
o
e
s
r
e
v
n
I
2
2
7
4
)
Y
+
X
(
/
X
3
2
8
4
X
g
o
li
t
n
A
4
2
9
4
Z
x
)
Y
-
X
(
5
2
0
5
t
u
p
n
I
l
a
i
c
e
p
S
Z
e
g
n
a
R
t
u
p
t
u
O
l
a
i
c
e
p
S
Z
.
s
d
r
a
w
n
o
0
0
0
4
4
8
9
.
o
N
/
S
m
o
r
f
e
l
b
a
li
a
v
a
t
c
e
l
e
S
o
L
d
n
a
t
c
e
l
e
S
i
H
:
e
t
o
N
Y
L
P
P
U
S
R
E
W
O
P
S
P
c
d
V
0
8
3
~
0
8
d
n
a
c
a
V
0
7
2
~
0
7
:
y
l
p
p
u
S
r
e
w
o
P
e
g
a
t
l
o
V
h
g
i
H
H
c
d
V
0
9
~
0
2
d
n
a
c
a
V
0
8
~
4
2
:
y
l
p
p
u
S
r
e
w
o
P
e
g
a
t
l
o
V
d
i
M
M
c
d
V
0
3
~
8
d
n
a
c
a
V
0
3
~
8
:
y
l
p
p
u
S
r
e
w
o
P
e
g
a
t
l
o
V
w
o
L
L
How to Use the Maths Function Formulae.
X, Y, and Z are taken as 0 to 1.0000, representing the full input range.
eg.
4.000mA
=
0.0000
8.000mA
=
0.2500
12.000mA
=
0.5000
16.000mA
=
0.7500
20.000mA
=
1.0000
The selected calculation is then performed on the inputs. The output is then SCALED so the resultant range is between
0 and 1.000. (The scaling factor is the factor the largest output must be scaled by to get the result = 1.) This 0 to 1.000
range represents the full output range, as set by the output DIP switches.
Examples of Using the Maths Function Formulae.
NOTE: For these examples inputs and outputs are configured as 4~20mA.
TX801MInput Range Programming Table.
Always set OUTPUT range first, then INPUT range.
DIP switches and trimpots are accessed by removing the small rectangular lid on the top of the TX801M enclosure.
Notes: 1/ Switch status 1 = ON, 0 = OFF, X = DON'T CARE.
2/ All inputs must be of the same signal type.
3/ If using voltage inputs, short unused inputs to 'COM' (terminal 6).
E
G
N
A
R
T
U
P
N
I
1
-
4
S
2
-
4
S
3
-
4
S
4
-
4
S
5
-
4
S
6
-
4
S
n
i
V
V
5
~
0
0
0
0
0
1
1
V
0
1
~
0
0
0
0
1
1
1
V
5
~
1
0
0
0
0
0
0
V
0
1
~
2
0
0
0
1
0
0
n
i
I
A
m
0
2
~
0
1
1
1
0
1
1
A
m
0
2
~
4
1
1
1
0
0
0
s
e
l
p
m
a
x
E
)
A
m
(
s
t
u
p
n
I
e
u
l
a
V
d
e
t
r
e
v
n
o
C
t
n
a
t
l
u
s
e
R
e
u
l
a
V
g
n
i
l
a
c
S
r
o
t
c
a
F
t
u
p
t
u
O
)
A
m
(
l
a
n
g
i
S
X
Y
Z
X
Y
Z
Y
+
X
4
4
-
0
.
0
0
.
0
-
0
5
.
0
0
.
4
2
1
2
1
-
5
.
0
5
.
0
-
1
0
0
.
2
1
0
2
0
2
-
0
.
1
0
.
1
-
2
0
0
.
0
2
Z
x
Y
x
X
4
4
4
0
.
0
0
.
0
0
.
0
0
1
0
0
.
4
2
1
2
1
2
1
5
.
0
5
.
0
5
.
0
6
5
1
0
.
0
5
2
.
4
6
1
6
1
6
1
5
7
.
0
5
7
.
0
5
7
.
0
9
1
2
4
.
0
5
7
.
0
1
0
2
0
2
0
2
0
.
1
0
.
1
0
.
1
1
0
0
.
0
2
)
2
/
1
(
^
X
4
-
-
0
.
0
-
-
0
1
0
0
.
4
8
-
-
5
2
.
0
-
-
5
.
0
0
0
.
2
1
2
1
-
-
5
.
0
-
-
1
7
0
7
.
0
1
3
.
5
1
6
1
-
-
5
7
.
0
-
-
0
6
6
8
.
0
6
8
.
7
1
0
2
-
-
0
.
1
-
-
1
0
0
.
0
2
X
2
4
-
-
0
.
0
-
-
0
1
0
0
.
4
8
-
-
5
2
.
0
-
-
5
2
6
0
.
0
0
0
.
5
2
1
-
-
5
.
0
-
-
5
2
.
0
0
0
.
8
6
1
-
-
5
7
.
0
-
-
5
2
6
5
.
0
0
0
.
3
1
0
2
-
-
0
.
1
-
-
1
0
0
.
0
2